Samuel A. Nastase — CV

Education


PhD—Cognitive Neuroscience  December, 2017
Dartmouth College (advisor: James V. Haxby)

MSc—Cognitive Neuroscience  July, 2012
University of Trento (advisor: Uri Hasson)

BA—Cognitive Science, Philosophy  May, 2010
Johns Hopkins University (advisor: Michael McCloskey)

Employment


Associate Research Scholar  2023–present
Princeton University

Lecturer  2021–present
Princeton University

Postdoctoral Research Associate  2018–2022
Princeton University (advisors: Uri Hasson, Kenneth A. Norman)

Student Intern  June–August, 2016
Siemens Healthcare (advisor: Francisco Pereira)

Publications


Zada, Z., Goldstein, A. Y., Michelmann, S., Simony, E., Price, A., Hasenfratz, L., Barham, E., Zadbood, A., Doyle, W., Friedman, D., Dugan, P., Melloni, L., Devore, S., Flinker, A., Devinsky, O., Hasson, U.*, & Nastase, S. A.* (2024). A shared linguistic space for transmitting our thoughts from brain to brain in natural conversations. Neuron, 112(18), 3211–3222. DOI PDF

Kumar, S.*, Sumers, T. R.*, Yamakoshi, T., Goldstein, A., Hasson, U., Norman, K. A., Griffiths, T. L., Hawkins, R. D., & Nastase, S. A. (2024). Shared functional specialization in transformer-based language models and the human brain. Nature Communications, 15, 5523. DOI PDF

Han, J., Chauhan, V., Philip, R., Taylor, M. K., Jung, H., Halchenko, Y. O., Gobbini, M. I., Haxby, J. V.*, & Nastase, S. A.* (2024). Behaviorally-relevant features of observed actions dominate cortical representational geometry in natural vision. bioRxiv. DOI PDF

Chang, C. H. C., Nastase, S. A., & Hasson, U. (2024). How a speaker herds the audience: multi-brain neural convergence over time during naturalistic storytelling. Social Cognitive and Affective Neuroscience, 19(1), nsae059. DOI PDF

Goldstein, A., Wang, H., Sheffer, T., Schain, M., Zada, Z., Niekerken, L., Aubrey, B., Nastase, S. A., Gazula, H., Casto, C., Doyle, W. K., Friedman, D., Devore, S., Dugan, P., Hassidim, A., Brenner, M., Matias, Y., Devinsky, O., Flinker, A., & Hasson, U. (2024). Information-making processes in the speaker’s brain drive human conversations forward. bioRxiv. DOI PDF

Bhattacharjee, A., Zada, Z., Wang, H., Aubrey, B., Doyle, W., Dugan, P., Friedman, D., Devinsky, O., Flinker, A., Ramadge, P. J., Hasson, U., Goldstein, A.*, & Nastase, S. A.* (2024). Aligning brains into a shared space improves their alignment to large language models. bioRxiv. DOI PDF

Hong, Z.*, Wang, K.*, Zada, Z., Gazula, H., Turner, D., Aubrey, B., Niekerken, L., Doyle, W., Devore, S., Dugan, P., Friedman, D., Devinsky, O., Flinker, A., Hasson, U.*, Goldstein, A.*, & Nastase, S. A.* (2024). Scale matters: large language models with billions (rather than millions) of parameters better match neural representations of natural language. eLife, 13, RP101204. DOI PDF

Christian, I. R., Nastase, S. A., Kim, L. K., & Graziano, M. S. (2024). Meta-awareness, mind-wandering, and the control of ‘default’ external and internal orientations of attention. bioRxiv. DOI PDF

Goldstein, A., Nastase, S. A.*, Wang, H.*, Niekerken, L.*, Zada, Z.*, Aubrey, B.*, Sheffer, T.*, Gazula, H., Schain, M., Singh, A., Rao, A., Choe, G., Kim, C., Doyle, W., Friedman, D., Devore, S., Dugan, P., Hassidim, A., Brenner, M., Matias, Y., Devinsky, O., Flinker, A., & Hasson, U. (2023). Deep speech-to-text models capture the neural basis of spontaneous speech in everyday conversations. bioRxiv. DOI PDF

Goldstein, A., Grinstein-Dabush, A., Schain, M., Wang, H., Hong, Z., Aubrey, B., Nastase, S. A., Zada, Z., Ham, E., Hong, Z., Feder, A., Gazula, H., Buchnik, E., Doyle, W., Devore, S., Dugan, P., Reichart, R., Friedman, D., Brenner, M., Hassidim, A., Devinsky, O., Flinker, A., & Hasson, U. (2024). Alignment of brain embeddings and artificial contextual embeddings in natural language points to common geometric patterns. Nature Communications, 15, 2768. DOI PDF

Gu, C., Peng, Y., Nastase, S. A., Mayer, R. E., & Li, P. (2024). Onscreen presence of instructors in video lectures affects learners’ neural synchrony and visual attention during multimedia learning. Proceedings of the National Academy of Sciences, 121(12), e2309054121. DOI PDF

Moia, S., Wang, H. T., Heinsfeld, A. S., Jarecka, D., Yang, Y. F., Heunis, S., Svanera, M., De Leener, B., Gondová, A., Kim, S., Basavaraj, A., Bayer, J. M. M., Bayrak, R. G., Bazin, P.-L., Bilgin, I. P., Bollmann, S., Borek, D., Borghesani, V., Cao, T., Chen, G., De La Vega, A., Dresbach, S., Ehses, P., Ernsting, J., Esteves, I., Ferrante, O., Garner, K. G., Gau, R., Germani, E., Ghafari, T., Ghosh, S. S., Goodale, S. E., Gould van Praag, C. D., Guay, S., Gulban, O. F., Halchenko, Y. O., Hanke, M., Herholz, P., Heuer, K., Hoffstaedter, F., Huang, R., Huber, R., Jensen, O., Keeratimahat, K., Kosciessa, J. Q., Lukic, S., Magielse, N., Markiewicz, C. J., Martin, C. G., Maumet, C., Menacher, A., Mentch, J., Mönch, C., More, S., Muller-Rodriguez, L., Nastase, S. A., Nicolaisen-Sobesky, E., Nielson, D. M., Nolan, C. R., Paugam, F., Pinheiro-Chagas, P., Pinho, A. L., Pizzuti, A., Poldrack, B., Poser, B. A., Rocca, R., Sanz-Robinson, J., Sarink, K., Sitek, K. R., Spychala, N., Stirnberg, R., Szczepanik, M., Torabi, M., Toro, R., Urchs, S. G. W., Valk, S. J., Wagner, A. S., Waite, L. K., Waite, A., Q., Waller, L., Wishard, T. J., Wu, J., Zhou, Y., Bijsterbosch, J. D., & The Physiopy Community. (2024). Proceedings of the OHBM Brainhack 2022. Aperture Neuro, 4. DOI PDF

Kewenig, V., Lampinen, A., Nastase, S. A., Edwards, C., D’Elascombe, Q., Richardt, A., Skipper, J. I., & Vigliocco, G. (2023). Multimodality and attention increase alignment in natural language prediction between humans and computational models. arXiv. DOI PDF

Xu, Q., Peng, Y., Nastase, S. A., Chodorow, M., Wu, M., & Li, P. (2023). Does conceptual representation require embodiment? Insights from large language models. arXiv. DOI PDF

Jiahui, G., Feilong, M., Nastase, S. A., Haxby, J. V., & Gobbini, M. I. (2023). Cross-movie prediction of individualized functional topography. eLife, 12, e86037. DOI PDF

Jiahui, G., Feilong, M., Visconti di Oleggio Castello, Nastase, S. A., Haxby, J. V., & Gobbini, M. I. (2023). Modeling naturalistic face processing in humans with deep convolutional neural networks. Proceedings of the National Academy of Sciences, 120(43), e2304085120. DOI PDF

Feilong, M., Nastase, S. A., Jiahui, G., Halchenko, Y. O., Gobbini, M. I., & Haxby, J. V. (2023). The individualized neural tuning model: precise and generalizable cartography of functional architecture in individual brains. Imaging Neuroscience. DOI PDF

Xie, E., Liu, M., Li, K., Nastase, S. A., Gao, X., & Li, X. (2023). The single-and dual-brain mechanisms underlying the adviser’s confidence expression strategy switching during influence management. NeuroImage, 270, 119957. DOI PDF

Zadbood, A., Nastase, S. A., Chen, J., Norman, K. A., & Hasson, U. (2022). Neural representations of naturalistic events are updated as our understanding of the past changes. eLife, 11, e79045. DOI PDF

Chang, C. H. C., Nastase, S. A., & Hasson, U. (2022). Information flow across the cortical timescales hierarchy during narrative construction. Proceedings of the National Academy of Sciences, 119(51), e2209307119. DOI PDF

Goldstein, A.*, Ham, E.*, Nastase, S. A., Zada, Z., Dabush, A., Aubrey, B., Schain, M., Gazula, H., Feder, A., Doyle, W., Devore, S., Dugan, P., Friedman, D., Brenner, M., Hassidim, A., Devinsky, O., Flinker, A., Levy, O., & Hasson, U. (2022). Correspondence between the layered structure of deep language models and temporal structure of natural language processing in the human brain. bioRxiv. DOI PDF

Goldstein, A., Nastase, S. A.*, Zada, Z.*, Buchnik, E.*, Schain, M.*, Price, A.*, Aubrey, B.*, Feder, A.*, Emanual D.*, Cohen, A.*, Jensen, A.*, Gazula, H., Choe, G., Rao, A., Kim, C., Casto, C., Lora, F., Flinker, A., Devore, S., Doyle, W., Dugan, P., Friedman, D., Hassidim, A., Brenner, M., Matias, Y., Norman, K. A., Devinsky, O., & Hasson, U. (2022). Shared computational principles for language processing in humans and deep language models. Nature Neuroscience, 25, 369–380. DOI PDF

Mennen, A. C., Nastase, S. A., Yeshurun, Y., Hasson, U., Norman, K. A. (2022). Real-time neurofeedback to alter interpretations of a naturalistic narrative. NeuroImage: Reports, 2(3), 100111. DOI PDF

Williams, J. A., Margulis, E. H., Nastase, S. A., Chen, J., Hasson, U., Norman, K. A., Baldassano, C. (2021). High-order areas and auditory cortex both represent the high-level event structure of music. Journal of Cognitive Neuroscience, 34(4), 699–714. DOI PDF

Nastase, S. A., Liu, Y.-F., Hillman, H., Zadbood, A., Hasenfratz, L., Keshavarzian, N., Chen, J., Honey, C. J., Yeshurun, Y., Regev, M., Nguyen, M., Chang, C. H. C., Baldassano, C., Lositsky, O., Simony, E., Chow, M. A., Leong, Y. C., Brooks, P. P., Micciche, E., Choe, G., Goldstein, A., Vanderwal, T., Halchenko, Y. O., Norman, K. A., & Hasson, U. (2021). The “Narratives” fMRI dataset for evaluating models of naturalistic language comprehension. Scientific Data, 8, 250. DOI PDF

Kumar, M., Anderson, M. J., Antony, J. W., Baldassano, C., Brooks, P. P., Cai, M. B., Chen, P.-H. C., Ellis, C. T., Henselman-Petrusek, G., Huberdeau, D., Hutchinson, J. B., Li, P. Y., Lu, Q., Manning, J. R., Mennen, A. C., Nastase, S. A., Richard, H., Schapiro, A. C., Schuck, N. W., Shvartsman, M., Sundaraman, N., Suo, D., Turek, J. S., Turner, D. M., Vo, V. A., Wallace, G., Wang, Y., Williams, J. A., Zhang, H., Zhu, X., Capota, M., Cohen, J. D., Hasson, U., Li, K., Ramadge, P. J., Turk-Browne, N. B., Willke, T. L., & Norman, K. A. (2021). BrainIAK: The Brain Imaging Analysis Kit. Aperture Neuro, 1(4). DOI PDF

Wu, A., Nastase S. A., Baldassano, C., Turk-Browne, N. B., Norman, K. A., Engelhardt, B. E., & Pillow, J. W. (2021). Brain kernel: a new spatial covariance function for fMRI data. NeuroImage, 245, 118580. DOI PDF

Nastase, S. A. (2021). Toward a more ecological cognitive neuroscience. The Brunswik Society Newsletter, 36, 46–48. link PDF

Nguyen, M., Chang, A., Micciche, E., Meshulam, M., Nastase, S. A., & Hasson, U. (2021). Teacher-student neural coupling during teaching and learning. Social Cognitive and Affective Neuroscience, 17(4), 367–376. DOI PDF

Levitis, E., Gould van Praag, C. D., Gau, R., Heunis, S., DuPre, E., Kiar, G., Bottenhorn, K., Glatard, T., Nikolaidis, A., Whitaker, K. J., Mancini, M., Niso, G., Afyouni, S., Alonso-Ortiz, E., Appelhoff, S., Arnatkeviciute, A., Atay, S. M., Auer, T., Baracchini, G., Bayer, J. M. M., Beauvais, M. J. S., Bijsterbosch, J. D., Bilgin, I., P. Bollmann, S., Bollmann, S., Botvinik-Nezer, R., Bright, M. G., Calhoun, V. D., Chen, X., Chopra, S., Chuan-Peng, H., Close, T. G., Cookson, S. L., Craddock, R. C., De La Vega, A., De Leener, B., Demeter, D. V., Di Maio, P., Dickie, E. W., Eickhoff, S. B., Esteban, O., Finc, K., Frigo, M., Ganesan, S., Ganz, M., Garner, K. G., Garza-Villarreal, E. A., Gonzalez-Escamilla, G., Goswami, R., Griffiths, J. D., Grootswagers, T., Guay, S., Guest, O., Handwerker, D. A., Herholz, P., Heuer, K., Huijser, D. C., Iacovella, V., Joseph, M. J. E., Karakuzu, A., Keator, D. B., Kobeleva, X., Kumar, M., Laird, A. R., Larson-Prior, L. J., Lautarescu, A., Lazari, A., Haitz Legarreta, J., Li, X.-Y., Lv, J., Mansour, S., Meunier, D., Moraczewski, D., Nandi, T., Nastase, S. A., Nau, M., Noble, S., Norgaard, M., Obungoloch, J., Oostenveld, R., Orchard, E. R., Pinho, A. L., Poldrack, R. A., Qiu, A., Raamana, P. R., Rokem, A., Rutherford, S., Sharan, M., Shaw, T. B., Syeda, W. T., Testerman, M. M., Toro, R., Valk, S. L., Van Den Bossche, S., Varoquaux, G., Váša, F., Veldsman, M., Vohryzek, J., Wagner, A. S., Walsh, R. J., White, T., Wong, F.-T., Xie, X., Yan, C.-G., Yang, Y-.F., Yee, Y., Zanitti, G. E., Van Gulick, A. E., Duff, E., & Maumet, C. (2021). Centering inclusivity in the design of online conferences—An OHBM–Open Science perspective. GigaScience, 10(8), giab051. DOI PDF

Wilterson, A. I., Nastase, S. A., Bio, B. J., Guterstam, A., Graziano, M. S. A. (2021). Attention, awareness, and the right temporoparietal junction. Proceedings of the National Academy of Sciences, 118(25), e2026099118. DOI PDF

Gau, R., Noble, S., Heuer, K., Bottenhorn, K. L., Bilgin, I. P., Yang, Y.-F., Huntenburg, J. M., Bayer, J., Bethlehem, R. A. I., Rhoads, S. A., Vogelbacher, C., Borghesani, V., Levitis, E., Wang, H.-T., Van Den Bossche, S., Kobeleva, X., Haitz Legarreta, J., Guay, S., Atay, S. M., Varoquaux, G., Huijser, D. C., Sandström, M. S., Herholz, P., Nastase, S. A., Badhwar, A., Dumas, G., Schwab, S., Moia, S., Dayan, M., Bassil, Y., Brooks, P., Mancini, M., Shine, J. M., O’Connor, D., Xie, X., Poggiali, D., Friedrich, P., Riedl, L., Toro, R., Heinsfeld, A. S., Caballero-Gaudes, C., Eklund, A., Garner, K. G., Nolan, C. R., Demeter, D. V., Barrios, F. A., Merchant, J. S., McDevitt, E. A., Oostenveld, R., Craddock, R. C., Rokem, A., Doyle, A., Esper, N. B., Ghosh, S. S., Langs, G., Nikolaidis, A., Stanley, O. W., Uruñuela, E., Vohryzek, J., & The Brainhack Community. (2021). Brainhack: developing a culture of open, inclusive, community-driven neuroscience. Neuron, 109(11), 1769–1775. DOI PDF

Xie, E., Yin, Q., Li, K., Nastase, S. A., Zhang, R., Wang, N., & Li, X. (2021). Sharing happy stories increases interpersonal closeness: interpersonal brain synchronization as a neural indicator. eNeuro, 8(6). DOI PDF

Busch, E. L., Slipski, L., Feilong, M., Guntupalli, J. S., di Oleggio Castello, M. V., Huckins, J. F., Nastase, S. A., Gobbini, M. I., Wager, T., & Haxby, J. V. (2020). Hybrid hyperalignment: a single high-dimensional model of shared information embedded in cortical patterns of response and functional connectivity. NeuroImage, 233, 117975. DOI PDF

Nastase, S. A., Goldstein, A., & Hasson, U. (2020). Keep it real: rethinking the primacy of experimental control in cognitive neuroscience. NeuroImage, 222, 117254. DOI PDF

Haxby, J. V., Guntupalli, J. S., Nastase, S. A., & Feilong, M. (2020). Hyperalignment: modeling shared information encoded in idiosyncratic cortical topographies. eLife, 9, e56601. DOI PDF

Nastase, S. A., Liu, Y.-F., Hillman, H., Norman, K. A., & Hasson, U. (2020). Leveraging shared connectivity to aggregate heterogeneous datasets into a common response space. NeuroImage, 217, 116865. DOI PDF

Willems, R., Nastase, S. A., & Milivojevic, B. (2020). Narratives for neuroscience. Trends in Neurosciences, 43(5), 271–273. DOI PDF

Hasson, U., Nastase, S. A., & Goldstein, A. (2020). Direct fit to nature: an evolutionary perspective on biological and artificial neural networks. Neuron, 105(3), 416–434. DOI PDF

Haxby, J. V., Gobbini, M. I., & Nastase, S. A. (2020). Naturalistic stimuli reveal a dominant role for agentic action in visual representation. NeuroImage, 216, 116561. DOI PDF

Nastase, S. A., Gazzola, V., Hasson, U., & Keysers, C. (2019). Measuring shared responses across subjects using intersubject correlation. Social Cognitive and Affective Neuroscience, 14(6), 667–685. DOI PDF

Lin, X., Sur, I., Nastase, S. A., Divakaran, A., Hasson, U., & Amer, M. R. (2019). Data-efficient mutual information neural estimator. arXiv, arXiv:1905.03319. DOI PDF

Feilong, M., Nastase, S. A., Guntupalli, J. S., Haxby, J. V. (2018). Reliable individual difference in fine-grained cortical functional architecture. NeuroImage, 138, 375–386. DOI PDF

Nastase, S. A.*, Van Uden, C. E.*, Connolly, A. C., Feilong, M., Hansen, I., Gobbini, M. I., Haxby, J. V. (2018). Modeling semantic encoding in a common neural representational space. Frontiers in Neuroscience, 12, 437. DOI PDF

Nastase, S. A., Halchenko, Y. O., Connolly, A. C., Gobbini, M. I., Haxby, J. V. (2018). Neural responses to naturalistic clips of behaving animals in two different task contexts. Frontiers in Neuroscience, 12, 316. DOI PDF

Nastase, S. A., Davis, B., Hasson, U. (2018). Cross-modal and non-monotonic representations of statistical regularity are encoded in local neural response patterns. NeuroImage, 173, 509–517. DOI PDF

Nastase, S. A., Connolly, A. C., Oosterhof, N. N., Halchenko, Y. O., Guntupalli, J. S., Visconti di Oleggio Castello, M., Gors, J., Gobbini, M. I., & Haxby, J. V. (2017). Attention selectively reshapes the geometry of distributed semantic representation. Cerebral Cortex, 27(8), 4277–4291. DOI PDF

Nastase, S. A., & Haxby, J. V. (2017). Structural Basis of Semantic Memory. In J. H. Byrne (Ed.), Learning and Memory: A Comprehensive Reference (2nd ed., pp. 133–151). Cambridge, MA: Academic Press. DOI PDF

Nastase, S. A., Davis, B., Halchenko, Y. O., & Hasson, U. (2016). Cross-modal searchlight classification: methodological challenges and recommended solutions. Paper presented at the 2016 IEEE International Workshop on Pattern Recognition in Neuroimaging (PRNI). DOI PDF

Connolly, A. C., Sha, L., Guntupalli, J. S., Oosterhof, N. N., Halchenko, Y. O., Nastase, S. A., Visconti di Oleggio Castello, M., Abdi, H., Jobst, B. C., Gobbini, M. I., & Haxby, J. V. (2016). How the human brain represents perceived dangerousness or “predacity” of animals. Journal of Neuroscience, 36(19), 5373–5384. DOI PDF

Nastase, S. A., Iacovella, V., Davis, B., and Hasson, U. (2015). Connectivity in the human brain dissociates entropy and complexity of auditory inputs. NeuroImage, 108, 292–300. DOI PDF

Nastase, S. A., Iacovella, V. and Hasson, U. (2014). Uncertainty in visual and auditory series is coded by modality-general and modality-specific neural systems. Human Brain Mapping, 35(4), 1111–1128. DOI PDF

Invited talks


Nastase, S. A. (2024, December). Learning a shared linguistic space for transmitting our thoughts to others. Invited talk at the Department of Psychology at the University of Southern California, Los Angeles, CA.

Nastase, S. A. (2024, December). Learning a shared linguistic space for transmitting our thoughts to others. Invited talk at the Department of Psychology at the University of Maryland, College Park, MD.

Nastase, S. A., & Zada, Z. (2024, May). Language as a vehicle for interactively navigating a shared meaning space. Invited talk and panel at the Neurobiology of Language Workshop at the Massachusetts Institute of Technology, Cambridge, MA.

Nastase, S. A. (2024, March). Learning a shared linguistic space for transmitting our thoughts to others. Invited talk at the University of Trento, Italy.

Nastase, S. A. (2024, February). Emergent brain-to-brain coupling and coordinated behavior in an artificial gameplay ecosystem. Invited talk at the Google DeepMind NeuroLab Workshop, London, UK.

Nastase, S. A. (2024, February). Learning a shared linguistic space for transmitting our thoughts to others. Invited talk at the Department of Brain and Cognitive Sciences at the University of Rochester, Rochester, NY.

Nastase, S. A. (2024, January). Learning a shared linguistic space for transmitting our thoughts to others. Invited talk at the Department of Psychology at the University of California, San Diego, CA.

Nastase, S. A. (2023, August). Learning a shared linguistic space for transmitting our thoughts to others. Invited talk at Fudan University, Shanghai, China.

Nastase, S. A., Zaid Zada, & Hasson, U. (2023, August). Predicting brain activity from word embeddings during natural language comprehension. Invited workshop at Jiangsu Normal University, Xuzhou, China.

Nastase, S. A. (2023, August). Learning a shared linguistic space for transmitting our thoughts to others. Invited talk at Jiangsu Normal University, Xuzhou, China.

Nastase, S. A. (2023, August). Learning a shared linguistic space for transmitting our thoughts to others. Invited talk at the Roundtable on ChatGPT and Large Language Models: Linguistic, Cognitive, and Humanistic Perspectives, Hong Kong Polytechnic University, Hong Kong.

Nastase, S. A. (2023, March). Learning a shared linguistic space for transmitting our thoughts to others. Invited talk at the Department of Psychology at the University of Pennsylvania, Philadelphia, PA.

Nastase, S. A. (2022, December). Putting peer review in the public record. Invited talk at the European Society for Magnetic Resonance in Medicine and Biology (ESMRMB) “MRI Together” workshop.

Nastase, S. A.. (2022, October). Learning a shared linguistic space for transmitting our thoughts to others. Invited colloquium for the Cognitive Science program at Indiana University, Bloomington, IN.

Bijsterboch, J., Bayrak, R. G., White, T., Nastase, S. A., Ramanaa, P. R., & Vazire, S. (2022, June). Open Science Room Panel: Open Publishing. Invited panel discussion at the annual meeting of the Organization for Human Brain Mapping, Glasgow, Scotland.

Nastase, S. A. (2022, March). Ecological insights into the neural machinery for communication and cooperation. Invited talk at the Music Cognition Lab at Princeton University, Princeton, NJ.

Nastase, S. A. (2022, February). Speaker–listener neural coupling underlies successful communication. Invited talk at the Columbia Narrative Medicine Program, New York, NY.

Nastase, S. A. (2021, November). Ecological perspectives on the neural machinery for communication and cooperation. Invited talk at the Institute for Research in Fundamental Sciences (IPM), Tehran, Iran.

Nastase, S. A. (2021, August). Ecological perspectives on the neural machinery for communication and cooperation. Invited talk at University of Western Ontario, London, ON, Canada.

Nastase, S. A. (2021, April). Developing a community resource for natural language neuroimaging. Invited talk at University of Michigan, Ann Arbor, MI.

Nastase, S. A. (2021, March). The neuroscience of storytelling. Invited talk at the Council on Science and Technology “Voices of STEM” virtual workshop at Princeton University, Princeton, NJ.

Nastase, S. A. (2021, March). Scaling up to a more ecological (and reproducible) cognitive neuroscience. Invited talk at the Courtois Project on Neuronal Modelling (CNeuromod), Montreal, QC, Canada.

Nastase, S. A. (2021, February). Developing community resources for reproducible neuroimaging. Invited talk at the Princeton University Library “Research Inside-Out: Shifting the conversation to research-as-process” panel discussion at Princeton University, Princeton, NJ.

Nastase, S. A. (2020, December). Scaling up to a more ecological (and reproducible) cognitive neuroscience. Invited talk at Johns Hopkins University, Baltimore, MD.

Nastase, S. A. (2020, November). Rethinking the primacy of experimental control in cognitive neuroscience. Invited talk at the Donders Session on “Narratives for Neuroscience” at the Donders Institute for Brain, Cognition and Behaviour, Nijmegen, the Netherlands.

Nastase, S. A. (2020, November). Scaling up to a more ecological (and reproducible) cognitive neuroscience. Invited talk at the Nathan Kline Institute for Psychiatric Research, Orangeburg, NY.

Nastase, S. A. (2020, June). The benefits of BIDS. Invited talk for the TrainTrack educational series at OHBM Brainhack 2020.

Nastase, S. A. (2020, May). Direct fit: an ecological perspective on biological and artificial neural networks. Invited talk at the Neural-AI Reading Group at Mila, Montreal, Canada.

Nastase, S. A. (2020, February). Scaling up to a more ecological (and reproducible) cognitive neuroscience. Invited talk at Columbia University, New York, NY.

Nastase, S. A. (2019, August). Estimating a shared response space across heterogeneous naturalistic story-listening data sets. Invited talk at the Center for Cognitive Neuroscience workshop on “Semantic processing and semantic knowledge” at Dartmouth College, Hanover, NH.

Nastase, S. A. (2019, January). Expanding on intersubject correlation analysis. Tutorial workshop for “MURI: A computational cognitive neuroscience approach to understanding event representation and episodic memory”, Princeton, NJ.

Nastase, S. A. (2017, November). Aligning fine-grained functional topographies across individuals. Invited talk at Brainhack DC, Washington, DC.

Nastase, S. A. (2017, August) Primacy of observed action representation during natural vision. Invited talk at the Center for Cognitive Neuroscience workshop on “Action understanding: from kinematics to mind” at Dartmouth College, Hanover, NH.

Nastase, S. A. & Haxby, J. V. (2016, November). Constructing a representational atlas for human cerebral cortex. Invited talk at the Neurocog 2016 workshop at Katholieke Universiteit Leuven, Leuven, Belgium.

Nastase, S. A. (2015, June). Multivariate pattern analysis for neuroscience. Invited talk at the Dartmouth-Hitchcock Medical Center, Lebanon, NH.

Open data


OpenNeuro ds002345
Nastase, S. A., Liu, Y.-F., Hillman, H., Zadbood, A., Hasenfratz, L., Keshavarzian, N., Chen, J., Honey, C. J., Yeshurun, Y., Regev, M., Nguyen, M., Chang, C. H. C., Baldassano, C. B., Lositsky, O., Simony, E., Chow, M. A., Leong, Y. C., Brooks, P. P., Micciche, E., Choe, G., Goldstein, A., Halchenko, Y. O., Norman, K. A., & Hasson, U. Narratives: fMRI data for evaluating models of naturalistic language comprehension. DOI

OpenNeuro ds000233
Nastase, S. A., Halchenko, Y. O., Connolly, A. C., Gobbini, M. I., Haxby, J. V. (2018). Neural responses to naturalistic clips of behaving animals in two different task contexts. DOI

Open code


Predicting brain activity from word embeddings during natural language comprehension
Nastase, S. A., Zada, Z., & Hasson, U. (2023). Predicting brain activity from word embeddings during natural language comprehension. GitHub

Brain Imaging Analysis Kit (BrainIAK)
Kumar, M., Anderson, M. J., Antony, J. W., Baldassano, C., Brooks, P. P., Cai, M. B., Chen, P.-H. C., Ellis, C. T., Henselman-Petrusek, G., Huberdeau, D., Hutchinson, J. B., Li, P. Y., Lu, Q., Manning, J. R., Mennen, A. C., Nastase, S. A., Richard, H., Schapiro, A. C., Schuck, N. W., Shvartsman, M., Sundaraman, N., Suo, D., Turek, J. S., Vo, V. A., Wallace, G., Wang, Y., Zhang, H., Zhu, X., Capota, M., Cohen, J. D., Hasson, U., Li, K., Ramadge, P. J., Turk-Browne, N. B., Willke, T. L., & Norman, K. A. (2020) BrainIAK: The Brain Imaging Analysis Kit. DOI website GitHub

Princeton Handbook for Reproducible Neuroimaging
Brooks, P. P., McDevitt, E. A., Mennen, A. C., Visconti di Oleggio Castello, M., & Nastase, S. A.. (2020). Princeton Handbook for Reproducible Neuroimaging. DOI Handbook

Intersubject correlation tutorial
Nastase, S. A., Gazzola, V., Hasson, U., & Keysers, C. (2019). Measuring shared responses across subjects using intersubject correlation. DOI GitHub

Teaching


Lecturer—Mathematical Tools for Neuroscience Fall, 2022–present
Princeton University

Lecturer—Neuroscience: From Molecules to Systems to Behavior  Spring, 2021–present
Princeton University (co-lecturers: Jonathan Cohen, Leigh Nystrom)

Teaching assistant—Systems Neuroscience with Lab  Fall, 2015
Dartmouth College (instructors: Jeffrey Taube, Matthijs van der Meer)

Teaching assistant—Brain Mapping with fMRI  Winter, 2015
Dartmouth College (instructor: Won Mok Shim)

Teaching assistant—Lab in Psychological Science  Spring, 2014
Dartmouth College (instructor: Jonathan Freeman)

Teaching assistant—Introduction to Neuroscience   Fall, 2013
Dartmouth College (instructor: Catherine Cramer)

Teaching fellow—Art, Mind & Brain  Summer, 2013
Harvard University (instructors: David Melcher, Francesca Bacci)

Teaching fellow—Windows into the Structure of Mind & Brain  Summer, 2011–2012
Harvard University (instructors: Alfonso Caramazza, John Assad)

Teaching fellow—Cutting Edge Neuroscience in Film & Television  Summer, 2012
Harvard University (instructor: George Alvarez)

Teaching fellow—Hormones, Brain & Behavior  Summer, 2011
Harvard University (instructor: Marc Tetel)

Funding and awards


CRCNS R01-DC022534 (PI: Uri Hasson)  2024–present
Building and testing computational models of the neural basis of natural communication

Neurobiology of Language Workshop Travel Award  May, 2024
National Science Foundation, MIT Press

NIH DP1-HD091948 (PI: Uri Hasson)  2023–2024
Speaker-listener coupling: a novel neural approach for assessing communication

NIH R01-MH112566 (PI: Uri Hasson)  2019–2022
Brain-to-brain dynamical coupling: a new framework for the communication of social knowledge

ReproNim/INCF Fellow  2019
ReproNim: A Center for Reproducible Neuroimaging Computation
International Neuroinformatics Coordinating Facility (INCF)

DARPA FA8750-18-C-0213 (PI: Mohamed Amer)  2018
Brain-to-brain coupling using temporal representation learning

OHBM Merit Abstract Award  May, 2015
Organization for Human Brain Mapping

Neukom Travel Grant  May, 2015
The William H. Neukom Institute for Computational Science

Marie A. Center 1982 Graduate Award for Excellence in Teaching  June, 2014
Department of Psychological & Brain Sciences, Dartmouth College

Student Council Conference Travel Grant  April, 2014
Graduate Student Council, Dartmouth College

Graduate Travel Award  April, 2014
Dartmouth Graduate Studies, Dartmouth College

OHBM Trainee Abstract Travel Award  March, 2014
Organization for Human Brain Mapping

Merit Award  December, 2012
Psychology & Cognitive Sciences Department, University of Trento

Community


Peer review: Acta Psychologica, Behavior Research Methods, Brain and Cognition, Brain and Language, Brain Structure and Function, Cambridge University Press, Canada Foundation for Innovation, Cerebral Cortex, Cognitive Science, Cognitive Science Society, Communications Biology, Computers in Human Behavior, Conference on Cognitive Computational Neuroscience, Cortex, Current Biology, European Journal of Neuroscience, Frontiers in Neuroscience, Human Brain Mapping, IEEE Transactions on Medical Imaging, Imaging Neuroscience, Journal of Experimental Psychology: Human Perception and Performance, Journal of Neurophysiology, Journal of Neuroscience, Journal of Open Source Software, Journal of the International Neuropsychological Society, Mind, Brain, and Education, National Science Foundation, Nature, Nature Communications, Nature Computational Science, Nature Human Behaviour, Nature Machine Intelligence, Nature Reviews Neuroscience, NeuroImage, NeuroImage: Reports, Neuron, Neuropsychologia, Neuroscience & Biobehavioral Reviews, Organization for Human Brain Mapping, PLOS One, PLOS Computational Biology, Princeton University Press, Proceedings of the National Academy of Sciences, Psychological Review, Psychophysiology, Royal Society Open Science, Science, Science Advances, Science Bulletin, Scientific Data, Scientific Reports, Social Cognitive and Affective Neuroscience, Social Neuroscience, Trends in Cognitive Sciences, Trends in Neurosciences

Action editor: Cognitive Science Society, Proceedings of the National Academy of Sciences

Society membership: Organization for Human Brain Mapping (OHBM), Society for Neuroscience (SfN), Society for the Neurobiology of Language (SNL), Computational Cognitive Neuroscience (CCN), Vision Sciences Society (VSS), Cognitive Neuroscience Society (CNS)

Mentorship
Ahmad Samara, graduate student, Vanderwal Lab, University of British Columbia
Yibei Chen, graduate student, Media Neuroscience Lab, UC Santa Barbara
Isaac Christian, graduate student, Graziano Lab, Princeton University
Yingying Peng, graduate student, Li Lab, Hong Kong Polytechnic University
Chanyuan Gu, graduate student, Li Lab, Hong Kong Polytechnic University
Zaid Zada, graduate student, Hasson Lab, Princeton University
Sade Abiodun, graduate student, Hasson Lab, Princeton University
Jane Han, graduate student, Haxby Lab, Dartmouth College
Heejung Jung, graduate student, Haxby Lab, Dartmouth College
Victoria Graf, undergraduate research assistant, Hasson Lab, Princeton University
Andrew Goldberg, undergraduate research assistant, Hasson Lab, Princeton University
Daniella Cohen, undergraduate senior thesis, Hasson Lab, Princeton Univeristy
Joe Chen, undergradate senior thesis, Hasson Lab, Princeton University
Jamal Williams, graduate student, Norman Lab, Princeton University
Paula Brooks, graduate student, Norman Lab, Princeton University
Anne Mennen, graduate student, Norman Lab, Princeton University
Anqi Wu, graduate student, Pillow Lab, Princeton University
Cara E. Van Uden, undergraduate research assistant, Haxby Lab, Dartmouth College
Rebecca E. Philip, undergraduate research assistant, Gobbini Lab, Dartmouth College
Anwesh Dash, undergraduate honors thesis, Gobbini Lab, Dartmouth College

Collaborations
Prof. M. Ida Gobbini, Department of Medical and Surgical Sciences, University of Bologna
Prof. Ping Li, Department of Chinese and Bilingual Studies, Hong Kong Polytechnic University
Prof. Tamara Vanderwal, Department of Psychiatry, University of British Columbia
Prof. Michael S. A. Graziano, Department of Psychology, Princeton University
Prof. Thomas L. Griffiths, Department of Psychology, Princeton University
Prof. Yaroslav O. Halchenko, Department of Psychological and Brain Sciences, Dartmouth College
Prof. James V. Haxby, Department of Psychological and Brain Sciences, Dartmouth College

Events
OHBM Naturalistic Neuroimaging Workgroup—contributor (June, 2024–present)
NSF Cognitive Neuroscience FY 2024 Review Panel—panelist (May, 2024)
Princeton University Responsible Conduct of Research Guide—contributor (2023)
Brainhack Princeton 2020, Princeton University—organizer (December, 2020)
Neuroimaging Analysis Methods (NIAM) seminar series, Princeton University—organizer (2019–present)
Brainhack Princeton 2019, Princeton University—organizer (November, 2019)
Dartmouth CCN Workshop, Dartmouth College—organizer (August, 2019)
Neurohackademy, University of Washington—attendee (July, 2019)
Kavli Summer Institute in Cognitive Neuroscience—attendee (June, 2019)
OHBM Brainhack 2019, Rome—attendee (June, 2019)
Pygers Reproducible Neuroimaging support group—organizer (2018—present)
OHBM Brainhack 2018, Singapore—attendee (June, 2018)
Dartmouth CCN Workshop, Dartmouth College—organizer (August, 2017)
Brainhack Dartmouth 2017, Dartmouth College—organizer (March, 2017)
Brainhack LA 2016, UCLA—attendee (November, 2016)
Dartmouth CCN Workshop, Dartmouth College—organizer (August, 2016)
AFNI Boot Camp, Dartmouth College—organizer (September, 2016)
Professional Ethics Program, Dartmouth College—instructor (September, 2014)
AFNI Boot Camp, Dartmouth College—organizer (September, 2014)
Cognitive Brown Bag symposium series, Dartmouth College—organizer (2014–2016)
fMRI Brown Bag symposium series, Dartmouth College—organizer (2013–2017)

Media


ORCID, Google Scholar, GitHub, ResearchGate, Twitter Bluesky

Neuron—An abstract linguistic space for transmitting information from one mind to another

The Naked Scientists—Brain waves sync up when two people talk

Nature Human Behaviour—Hierarchical organization of language predictions in the brain

The Scientist—Researchers report decoding thoughts from fMRI data

TechTalks—Artificial neural networks are more similar to the brain than they get credit for

Medical Xpress—A perspective on the study of artificial and biological neural networks

Nature—Credit data generators for data reuse

Wired—The Rogue Neuroscientist on a Mission to Hack Peer Review