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SUMMARY

Effective communication hinges on a mutual understanding of word meaning in different contexts. We re-
corded brain activity using electrocorticography during spontaneous, face-to-face conversations in five pairs
of epilepsy patients. We developed a model-based coupling framework that aligns brain activity in both
speaker and listener to a shared embedding space from a large language model (LLM). The context-sensitive
LLM embeddings allow us to track the exchange of linguistic information, word by word, from one brain to
another in natural conversations. Linguistic content emerges in the speaker’s brain before word articulation
and rapidly re-emerges in the listener’s brain after word articulation. The contextual embeddings better cap-
ture word-by-word neural alignment between speaker and listener than syntactic and articulatory models.
Our findings indicate that the contextual embeddings learned by LLMs can serve as an explicit numerical
model of the shared, context-rich meaning space humans use to communicate their thoughts to one another.

INTRODUCTION

Language is the bedrock of human communication, allowing us
to share our ideas and feelings with one another. Successful
communication, however, relies on a shared agreement on the
meaning of words in context. For example, the word cold can
describe the temperature, a personality trait, or a viral infection,
depending on the context. This contextual meaning of language
resides in a shared space between people in a community of
speakers: words absorb transient, agreed-upon meanings spe-
cific to their use and context.'*> Without a shared agreement, it
would be impossible for strangers to understand one another.
For example, speakers can only understand whether the word
cold in the sentence “you’re as cold as ice” refers to a personal-
ity trait or physical temperature if they understand the conversa-
tional context.

Until recently, we lacked a precise computational framework
for modeling how humans use words in context as we communi-
cate with others. To overcome this limitation, prior work has used
data-driven, unmediated coupling methods, such as intersubject
correlation (ISC), which leverage neural activity in one brain to

model neural activity in another brain.* ISC analyses revealed
that during natural communication, the listener’s brain activity
is coupled with the speaker’s brain activity, and the strength of
brain-to-brain coupling is proportional to the quality of commu-
nication.®"'? ISC analysis, however, is content-agnostic: 1SC
can be driven by any shared signals across subjects and cannot
tell us explicitly what features are aligned across brains —specif-
ically, ISC cannot tell us what context-specific linguistic informa-
tion is shared between speakers during real-world conversa-
tions. For example, in a face-to-face conversation, coupled
neural activity across speakers is influenced not only by the
words spoken but also by factors such as intonation, prosody,
gestures, facial expressions, eye gaze, and other nonverbal as-
pects of social communication.

A new class of large language models (LLMs) has recently
emerged that, for the first time, respects the richness of context
in natural communication. Remarkably, these models learn
from much the same shared space as humans: from real-world
language generated by humans. LLMs rely on a simple, self-su-
pervised objective (e.g., next-word prediction) to learn to pro-
duce context-specific linguistic outputs from real-world text
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Figure 1. Encoding models for capturing speaker-listener linguistic coupling

(A) Schematic depicting how encoding models isolate the linguistic content of speaker-listener brain-to-brain coupling. Word-level neural signals for both patients
are collated into speaker-listener roles and split into temporally contiguous train/test folds for cross-validation, along with their respective word embeddings. The
word-by-word embeddings (yellow) populate a shared multidimensional context-dependent feature space for modeling the linguistic content encoded in both
speaker and listener neural activity. Electrode-wise encoding models are estimated using ridge regression separately for the speaker (blue weight matrix) and
listener (red weight matrix) to predict neural activity from the LLM embeddings at varying lags relative to word onset. Within-subject encoding performance is
quantified separately for the speaker and listener by correlating the model-predicted and actual neural activity for left-out test segments of each conversation.
Model-based speaker-listener coupling is quantified as the correlation between the model-predicted activity derived from the model trained on the speaker (or
listener) and the actual neural activity of the listener (or speaker). Although unmediated, content-agnostic coupling methods like intersubject correlation (ISC)
directly correlate brain activity between speaker and listener (purple line), our model-based coupling method effectively isolates the linguistic component of brain-
to-brain coupling (black lines). That is, model-based analysis ensures that neural activities in the speaker and listener are aligned to a shared set of explicit
linguistic features.

(B) Components of speaker-listener brain-to-brain coupling. Each circle represents the variance due to one of three sources: the speaker’s brain activity (blue),
the listener’s brain activity (red), and the linguistic embedding space (yellow). Labeled intersections below represent partitions of shared variance: unmediated
intersubject correlation capturing shared variance between the speaker and listener (purple) as well as shared variance between the contextual embedding space
and the speaker’s (green) and listener’s (orange) brain activity. The central intersection of all three sources (black) represents the shared variance in speaker-
listener brain-to-brain coupling captured by the contextual embeddings, i.e., model-based coupling.

(legend continued on next page)
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corpora—and, in the process, implicitly encode the statistical
structure of natural language into a multidimensional embed-
ding space."®"'® For instance, LLMs will produce different rep-
resentations—i.e., contextual embeddings—for different uses
of the word cold based on the preceding context. The capacity
of these models to generate fluent, context-aware text, engage
in dialogue, and meaningfully answer questions is a testament
to just how much can be learned from the shared space of lan-
guage and communication.'® Interestingly, recent studies have
suggested that LLMs and the brain converge on shared compu-
tational principles for natural language comprehension. '’

Inthis study, we asked whether LLMs can provide an explicit nu-
merical model for how context-dependent information is shared
across brains during natural communication. We recorded cortical
activity using electrocorticography (ECoG) in five dyadic pairs of
epilepsy patients during spontaneous, interactive conversations.
Modeling speech production and comprehension in this free-
form setting is challenging, as each conversation has its unique tra-
jectory, context, and dynamic. Furthermore, half the words used
(50.11%) only appear once within a conversation; even words
that appear more than once do not appear twice in the exact
same context. LLMs, like humans, can interpret the contextual
meaning of words embedded in real-world conversations. We hy-
pothesized that this capacity can position LLM embeddings as an
explicit model of the shared linguistic space by which speaker and
listener communicate their thoughts—i.e., transmit their brain ac-
tivity—to one another in natural conversations.

To model the transfer of linguistic information across brains, we
extracted contextual embeddings for each word in the conversa-
tion from a widely used contextual language model, GPT-2.%? Us-
ing the same set of contextual embeddings, we trained encoding
models to predict brain activity during both speech production
and comprehension in held-out segments of the conversations.
We first demonstrate that contextual embeddings can predict
the neural activity for each word as it is articulated in each unique
conversation across the cortical language network during speech
comprehension and production. Consistent with the flow of infor-
mation during communication, our model-based coupling ana-
lyses demonstrate that the same “linguistic content” in the
speaker’s brain before word articulation re-emerges, word by
word, in the listener’s brain after each word is spoken. Our
model-based coupling framework ensures that both the speaker’s
and listener's neural activity are aligned to the same set of
context-dependent linguistic embeddings.

RESULTS

We recorded cortical activity using ECoG in five dyadic pairs of
epilepsy patients during free-form, face-to-face conversations.
We developed a model-based encoding framework to model
the context-dependent linguistic content shared between brains
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during natural conversations.'%*® We first filtered the neural data
to high-gamma broadband power to approximate local field po-
tentials. For each dyad, we segmented each conversation into
ten non-overlapping, consecutive segments (folds). Next, we
spliced the neural data into word-level epochs and collated
these epochs according to speaker and listener roles. We used
time-resolved text transcriptions of each conversation to extract
embeddings for each word from the autoregressive LLM
GPT-2.?? LLMs encode a multitude of morphological, syntactic,
semantic, and pragmatic dimensions into a unified embedding
space, which we collectively refer to as linguistic content
throughout this paper.

We used ridge regression to estimate separate encoding
models for the speaker and listener to predict the high-gamma
band neural activity for each word using the embeddings from
GPT-2 (Figure 1A). We trained each encoding model on nine
folds and then evaluated its performance by correlating model-
predicted neural activity with the actual neural activity for each
word in the remaining held-out test fold. This process was
repeated for each of the ten folds, and the correlations for
each fold were averaged to obtain the final encoding perfor-
mance. We fit separate, independent encoding models for
each electrode and each of the 129 250-ms bins spanning —4
to +4 s before and after word onset (marked 0 in the plots) during
speech production and comprehension. Ridge regression was
used with hyperparameter search in the training set to regularize
the norm of the regression weights and minimize the risks of
overfitting.>**° To focus on electrodes that encode linguistic
content, we performed a permutation test by re-estimating
within-subject production and comprehension encoding models
on phase-randomized neural data (p < 0.01, false discovery rate
[FDR] corrected); these models were estimated from non-
contextual, static GPT-2 embeddings to minimize selection
bias for the contextual embeddings.

Contextual embeddings predict brain activity in both the
speaker and listener

We assessed whether the linguistic embedding space could
capture time-resolved, word-related neural activity in both the
speaker and the listener. We trained electrode-wise encoding
models with 10-fold consecutive cross-validation at lags ranging
from —4 to +4 s relative to word onset and measured the corre-
lation between actual and model-predicted word-related activity
in each test fold separately for speech production and speech
comprehension (Figure 2). During speech production, we found
maximal encoding performance in speech articulation areas
along the precentral motor cortex, in the superior temporal cor-
tex, and in higher-order language areas in the temporal pole,
inferior frontal gyrus (IFG), and supramarginal gyrus (Figure 2A,
blue). Inspecting the dynamics of encoding performance within
the speaker’s brain across lags revealed that the maximal

(C) In our model-based coupling analysis, we evaluated intersubject encoding performance at each pair of lags between the speaker’s and listener’s brain activity,
resulting in a lag-by-lag matrix of correlation values (left). Word onset is depicted with gray lines at the center, dividing the matrix into quadrants: e.g., the bottom
right quadrant corresponds to the speaker’s brain activity before word onset and the listener’s brain activity after word onset. The horizontal dashed line connects
the speaker’s lag, labeled “2,” before word onset to all lags in the listener—depicted graphically on the right using dashed lines. The solid diagonal of the matrix
corresponds to the simultaneous speaker and listener lags, schematically shown at the bottom right as vertical solid lines between speaker-listener lags 1-4. Lag
pairs under the diagonal indicate that the speaker precedes the listener (dash-dot lines), connecting speaker lags 1-3 to listener lags 2-4.
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A Within-speaker and within-listener model-based (LLM) encoding performance

0.4 /_"‘\4\ /--3\ speaker
—_ 7S | - P ¢ ~
= o) \ 8, '
o N
g 0.3 S :
(3]
1S
P
e
g 02 listener
o
s |/
£
B 0.1
= CJ
c
()

0.0

-1.0 -0.5 0 0.5 1.0
lag (s)

B Temporal profile of encoding performance across regions of interest

all ROIs SM STG IFG
0.3 4 N=203 J N=58 J N=22
N=133 N=22 N=23

€ 0.2 . . <
w
+
L 0.1- . _
[}
9
é 00 T T T T T T T T T T T T
s MTG MFG
Y
o ] N=22 1 N=10 ] N=13
g 0.3 : 11 @ :zé H @
£ 02 <J _ <
K}
o
I
$ 0.1 . . .

O-O T T T T T T T T T T T T T T T T T T T

I speaker M listener

lag (s)

Figure 2. Within-speaker and within-listener linguistic encoding performance

Encoding models were trained to predict the neural activity from linguistic embeddings separately per lag and per electrode and evaluated using 10-fold cross-
validation. Encoding performance is quantified as the correlation between word-by-word model-predicted and actual electrode activity.

(A) Encoding performance for all electrodes from all subjects at five different lags relative to word onset (lag 0). Separate models are trained for spoken words
(production, blue) and heard words (comprehension, red).

(B) Encoding performance for all electrodes selected for significance (p < 0.01, permutation test, FDR corrected; see electrode selectionin STAR Methods) across
lags for all regions (B, top left) and in different regions of interest (ROIs) in the cortical language network. Error bands indicate the standard error of the mean
correlation across electrodes and subjects. The number of significant electrodes in the speaker and listener is displayed in the upper left corner of each panel. SM,
somatomotor cortex; STG, superior temporal gyrus; IFG, inferior frontal gyrus; MTG, middle temporal gyrus; SMG, supramarginal gyrus; ATL, anterior temporal

lobe; and MFG, middle frontal gyrus.

prediction peaked ~250 ms before word onset (Figure 2B, blue;
see Table S1 for peaks in individual regions of interest [ROIs]).
During speech comprehension, the encoding model predicted
neural responses in similar brain areas, particularly the superior
temporal cortex (Figure 2A, red). Comprehension encoding per-
formance increased gradually in superior and anterior temporal
electrodes, peaked ~250 ms after word onset, and decreased
over 1 s after the peak (Figure 2B, red; Table S1).
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The linguistic embedding space predicts neural activity in
multiple regions with different temporal dynamics and selectivity
(Figure 2B). Somatomotor (SM) electrodes encode linguistic
content more during speech production than comprehension,
particularly before word articulation. Electrodes in the superior
temporal gyrus (STG), on the other hand, encode linguistic con-
tent during both processes, although encoding performance is
stronger for comprehension. In the IFG and anterior temporal
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lobe (ATL), linguistic encoding during speech production peaks
prior to word onset, with sustained encoding after word articu-
lation during comprehension. Even during comprehension, en-
coding performance begins to ramp up before word onset.
There are two possible reasons for this: (1) the embedding for
a given word encodes contextual information spanning prior
words, and (2) the brain may facilitate real-time processing by
actively predicting the content of forthcoming words (see Gold-
stein et al."®). During speech production, encoding performance
in most regions decreases rapidly after word onset; this
decrease accompanies the increase in post-word-onset encod-
ing performance in the listener (Table S1). These results demon-
strate that the linguistic embedding space learned by GPT-2
captures relevant features for predicting neural activity during
language production and comprehension across the cortical
language network.

Contextual embeddings capture linguistic coupling
between the speaker and the listener

How are the speaker’s and listener’s brains aligned during the
conversation? The previous analysis used encoding models to
predict the neural signal from word embeddings separately in
the speaker and listener. To assess model-based linguistic
coupling across brains, we used the encoding model already
trained on the speaker’s brain activity to predict the listener’s
brain activity (and vice versa) using the same cross-validation
scheme; that is, we correlated the model-based predictions
from one brain with the actual neural activity in the other brain®’
(Figure 1A). This novel model-based coupling analysis quan-
tifies how well the model fit for speech production (or compre-
hension) generalizes to speech comprehension (or production)
in left-out segments of each conversation. By virtue of using
word embeddings from a language model, the encoding model
filters out non-linguistic features that may be common between
the conversants but that are not present in the conversation
transcript. This model-based framework is a qualitative
advance over content-agnostic, unmediated coupling methods
(e.g., ISC) in that it constrains any observed speaker-listener
coupling to the same set of context-dependent linguistic em-
beddings. To capture the temporal dynamics of speaker-
listener coupling, we applied this procedure for each pair of
lags in the speaker’s and listener’s brain activity, resulting in a
lag-by-lag encoding matrix of correlation values where the y
axis indexes lag in the speaker’s brain and the x axis indexes
lags in the listener’s brain, relative to word onset (Figure 1C).
In this matrix, the central axis lines signify the onset of word
articulation (lag O s). By contrast, the matrix diagonal corre-
sponds to simultaneous lags between the speaker and listener.
Intersubject encoding below the diagonal indicates that linguis-
tic content encoded in the speaker’s brain precedes the same
linguistic content encoded in the listener’s brain.

We first applied this procedure across all electrodes selected
for significance to estimate overall linguistic coupling across
the cortical language network (n = 203 production; 133 compre-
hension): we averaged the model-predicted neural activity across
electrodes (e.g., in the speaker) and correlated this with the aver-
aged actual neural activity across electrodes (e.g., in the listener);
different averaging schemes yielded qualitatively similar results
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(Figure S1). We observed time-locked, speaker-listener linguistic
coupling centered around the moment of articulation of each
word in the conversation (Figure 3A; training and testing on
speaker or listener yielded very similar results; Figure S2). Consis-
tent with the flow of information during communication, the lin-
guistic coupling falls under the diagonal, indicating that the
speaker’s brain is “leading” the listener’s brain (see Figure S3
for significance test). We found that linguistic content emerges
in the speaker’s brain prior to the spontaneous articulation of
each word and then re-emerges in the listener’s brain after
each word is heard. This temporal dynamic proceeds word by
word and is specific to the current word.

Model comparison of syntactic, phonemic, and LLM
features

Contextual embeddings extracted from GPT-2 encode linguistic
content across many dimensions of real-world text spanning
morphological, syntactic, semantic, and contextual depen-
dencies.'®"® Unlike unmediated coupling methods (e.g., ISC
analysis), our model-based framework supports rigorous model
comparison. We compared encoding performance between the
contextual LLM embeddings and two additional feature sets
inspired by classical psycholinguistics. First, we constructed
an articulatory phonemic model capturing articulatory speech
features for each phoneme®® (Table S2). Second, we con-
structed a syntactic model: we used spaCy to extract part-of-
speech tags for each word, as well as the syntactic relations
between words (based on a dependency parse tree) in each ut-
terance (Tables S3 and S4). We evaluate these alternative
feature spaces using the same encoding analysis we used for
contextual embeddings. We found that contextual embeddings
from GPT-2 predicted neural activity better within subjects (Fig-
ure S4) and between speaker-listener pairs than both the syntac-
tic (Figure 3E) and articulatory (Figure 3F) features (see Figure S5
for significance tests). This was even the case in the ostensibly
low-level perceptual (STG) cortex and articulatory (SM) cortex
(Figures S6 and S7). This may seem surprising, but SM areas
may encode ethological behavioral programs®® that extend
across longer timescales and are better captured by contextual
embeddings than articulatory features.

We hypothesized that the linguistic structures captured by the
classical articulatory and syntactic features may be implicitly
embedded in the multidimensional contextual embeddings. To
rigorously test this hypothesis, we used banded ridge regression
to estimate a joint encoding model containing all three feature
sets (symbolic articulatory features, symbolic syntactic features,
and contextual embeddings).?® This allows all three submodels
to fairly vie for variance in predicting held-out brain activity. We
found that the prediction performance of the articulatory and
syntactic models is reduced nearly to zero when forced to
compete for variance against the contextual embeddings (Fig-
ure S8), indicating that the symbolic articulatory and syntactic
models capture very little unique variance in brain activity above
and beyond what is already captured by the contextual embed-
dings. A variance partitioning analysis corroborated this result,
revealing that the unique contribution of the contextual embed-
dings markedly exceeds the variance explained by articulatory
and syntactic features (Figure S9).
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Figure 3. Speaker-listener brain-to-brain linguistic coupling

(A) Model-based speaker-listener coupling across all electrodes and regions for each pair of lags (see Figure S3 for statistical thresholding). This plot corresponds
to the shared variance between the speaker’s and listener’s brain activity captured by the linguistic encoding model (black intersection in Figure 1B). Speaker-
listener encoding peaks in the bottom right quadrant, indicating that linguistic content emerging in the speaker’s brain prior to word articulation re-emerges in the
listener’s brain after word articulation.

(B) Within-subject encoding performance for the speaker (blue) and listener (red). Gray lines connect significant pairs of lags in the speaker-listener encoding
performance matrix (A). Line transparency indicates correlation strength, while the size of each circle denotes the overall magnitude of model-based speaker-
listener coupling for that lag (L2-norm of row or column). Error bands indicate the standard error of the mean correlation across electrodes and subjects.

(C) Unmediated speaker-listener intersubject correlation (ISC) without an explicit language model. This analysis directly measures the correlation between word-
level neural activity but cannot isolate the word-specific linguistic content driving brain-to-brain coupling.

(D) Intersubject encoding performance using non-contextual, lexical-semantic embeddings from the trained LLM.

(E and F) (E) Intersubject encoding performance using symbolic word embeddings defined with binary vectors coding for parts of speech, syntactic de-
pendencies, and (F) articulatory phonemic features.

Speaker-listener linguistic coupling is word, context, for cross-validation in the encoding analysis. Replicating prior
and conversation specific results,” "> we found strong coupling between speaker and
During face-to-face communication, the speaker-listener brain  listener neural activity during natural conversations. Direct
responses can be coupled due to other variables, such as facial coupling was consistently below the diagonal, indicating that
expressions, gestures, and background sounds that are not the speaker’s brain activity preceded the listener’s brain activity
strictly linguistic in nature. We next evaluated unmediated (Figure 3C). Unmediated coupling methods like ISC, however,
coupling by computing the direct ISC between the speaker’s cannotisolate the word-by-word linguistic content of the conver-
and listener’s brain activity (i.e., not mediated through a lan-  sation. Therefore, the observed coupling is not time-locked to
guage model) in a way that matched the folding scheme used the articulation of each word. Words occurring before and
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after the current word, regardless of their content, will contribute
to the observed correlation, yielding high correlations all along
the diagonal. On the other hand, the model-based speaker-
listener coupling results (Figure 3A) are temporally specific, sug-
gesting that the embeddings capture word-specific linguistic
coupling in a way that cannot be observed using ISC analysis.

We next asked whether model-based speaker-listener linguis-
tic coupling was sensitive to the specific meaning of words in
context. We extracted non-contextual, lexical-semantic embed-
dings from GPT-2 with the same dimensionality as the contextual
embeddings. In this setting, each occurrence of a given word re-
ceives the same embedding, capturing the “average” meaning
of that word across all contexts. Similar to other types of word
embeddings—such as word2vec and GloVe®®*' —these repre-
sentations cannot capture the unique meaning of words in
context. For example, the word cold will receive the same
embedding regardless of whether the context refers to a person-
ality trait or the temperature. We found that speaker-listener lin-
guistic coupling was significantly stronger for contextual embed-
dings over non-contextual word embeddings (Figure 3D and S5).
Furthermore, to demonstrate that our results are not limited to
our choice of an autoregressive language model (GPT-2), we
replicated our core results using BERT,* a well-studied masked
language model (Figure S10).

Finally, we asked whether a given speaker and listener tend to
explore a conversation-specific region of the linguistic space. To
examine the uniqueness of linguistic coupling in each conversa-
tion, we compared the speaker and listener weight matrices esti-
mated by the encoding models within and across conversations.
We found that the relationship between speaker and listener
model weights is partly specific to each dyadic conversation
with reduced generalization across conversations; that is, each
conversation was biased toward a particular subset of features
in the contextual embedding space (Figures S11 and S12).

Linguistic coupling across language areas within
speakers and listeners
We next used LLM contextual embeddings to assess linguistic
coupling across regions of the cortical language network within
speakers and listeners (i.e., model-based “connectivity”). We
correlated model-based predictions from one region with the
actual neural activity in other regions.?” For example, we used en-
coding models trained on neural activity in the speaker’s ATL to
predict neural activity in the speaker’s STG. Similarly, we used
encoding models trained on neural activity in the listener’s STG
to predict neural activity in the listener’'s ATL. This analysis
yielded lag-by-lag encoding matrices across pairs of language
regions within the speaker and the listener (Figures S13 and S14).
During language production, we found a dense network of inter-
regional linguistic encodings with many regions encoding similar
features of the linguistic embedding space (Figure 4A, top). These
inter-regional connections include both higher-level (ATL and
SMG) and lower-level (SM, STG, and IFG) language areas. For
example, the speaker’s STG and IFG are both coupled to the
speaker’s SM but with different temporal structures (Figure 4A,
bottom; Figure S13); SM precedes STG, and coupling is closely
tied to word articulation, while linguistic coupling between SM
and IFG is largely synchronous and more temporally diffuse. Inter-

¢ CellP’ress

OPEN ACCESS

estingly, SM tends to precede most regions, except for IFG. By
contrast, during language comprehension, linguistic coupling re-
veals a sparser network comprising typical language areas (Fig-
ure 4C): STG is coupled with and generally precedes IFG, middle
temporal gyrus [MTG], and ATL (Figure 4C, bottom). Unexpect-
edly, although SM did have strong encoding performance during
comprehension (Figure 2B), it was not strongly coupled to any
other region, suggesting that it encodes a particular set of linguis-
tic features not shared with other areas (Figure S14).

Speaker-listener linguistic coupling across

language areas

Model-based speaker-listener coupling was widespread across
the cortical language network and partially asymmetric be-
tween different language areas (Figure 4B). In the speaker,
SM, STG, and ATL were the primary drivers of the speaker-
listener linguistic coupling; in the listener, STG, IFG, and ATL
were the primary receivers (Figure S15). The speaker’s SM
was strongly coupled with the listener’'s STG, IFG, and ATL.
Interestingly, the speaker’s SM activity before word onset
was coupled to the listener's STG before word onset (lower
left quadrant), then differently coupled after word onset (upper
right quadrant, with minimal coupling in the lower right quad-
rant); this suggests that both regions encode shared features
that change rapidly at word articulation. By contrast, the
speaker’s SM before word onset was most strongly coupled
to the listener's IFG after word onset (lower right quadrant).
Although most speaker-listener couplings were asymmetric be-
tween language areas, the speaker’s STG was coupled to the
listener’s STG along the diagonal around word articulation, sug-
gesting a short delay in these lower-level regions (Figure 1C).
The speaker’s ATL prior to word onset was coupled with the lis-
tener’s ATL around word onset with a larger speaker-listener la-
tency (farther off the diagonal). These results suggest a network
configuration where linguistic coupling between the high-level
language and articulatory areas drives speech production,
whereas coupling primarily between STG and IFG, followed
by higher-level regions, underlies speech comprehension.

DISCUSSION

In this study, we show that contextual embeddings from an LLM
encode the shared linguistic space between speakers. We
develop a model-based coupling framework that quantifies
how linguistic information is communicated from brain to brain
in spontaneous, face-to-face conversations via a shared set of
context-sensitive linguistic embeddings extracted from an
LLM. Specifically, we extracted a contextual embedding for
each word in each conversation and used it to recover word-
specific brain activity shared between the speaker and listener.
We find that context-dependent linguistic content emerges in
the speaker’s brain activity before word articulation, and the
same linguistic content later re-emerges in the listener’s brain af-
ter word articulation. This temporal dynamic matches the overall
flow of information in a conversation, where speakers dynami-
cally alternate roles in transmitting their ideas to one another.
The contextual embeddings learned by an LLM approximate a
multidimensional linguistic “code” —shared across brains—that

Neuron 712, 3211-3222, September 25, 2024 3217




¢? CellPress

OPEN ACCESS

A Within-speaker
linguistic network

B Speaker-listener linguistic coupling

MBC (r)

Neuron

C Within-listener
linguistic network

0.15

0.00

4.0

2.0 f
0 0
2 0.0 2
220 g
5+ ©
() ()
o o
2 4.0 »

speaker lag (s) listener lag (s)

listener lag (s)

7.

listener lag (s) listener lag (s)

peaker lag (s)

speaker lag (s)

S

speaker lag (s) listener lag (s)

4.0
2.0
£
0.0 /
-2.0 ‘
-4.0
-4.0 -2.0 0.0 2.074.0 -4.0 -2.0 0.0 2.0%2.0-4.0

- T T T I@'\
-4.0 -2.0 0.0 2.074.0

listener lag (s)

7

listener lag (s)

-2.0 0.0 2.0™4.0
listener lag (s)

L —

-0.15

MBC (r)

0.15

Figure 4. Inter-regional model-based coupling within and across subjects

(A) Linguistic encoding across regions of the cortical language network within the speaker’s brain. The connection between the anterior temporal lobe (ATL) and
somatosensory (SM), for example, indicates the maximum encoding performance across lags for a model trained on ATL and tested on SM (and vice versa). The
network diagram (top) depicts significant linguistic coupling between two regions as bidirectional gray lines (p < 0.05, Bonferroni corrected), where the darkness
of the connection indexes the strength of linguistic encoding. Below are lag-by-lag within-speaker encoding matrices for two example pairs of regions with
contour lines denoting significant lags (see Figure S13 for all pairs of ROls and the number of electrodes per area).

(B) Inter-regional model-based coupling between the speaker (blue) and listener (red) across multiple language areas. Network diagrams (top) show significant
speaker-listener coupling for pairs of regions; the darkness of the connection indexes the strength of linguistic encoding. Below are lag-by-lag model-based

coupling matrices for four example pairs of regions.

(C) Linguistic encoding across regions of the cortical language network within the listener’s brain (top), with lag-by-lag encoding matrices for two example pairs of

regions below.

both speaker and listener can use to communicate their
thoughts during natural conversations. Our findings align with
prior work demonstrating that LLM contextual embeddings
capture linguistic features of brain activity during language
comprehension (Figure 2, red).'” 23334 Qur findings expand
over prior work in two significant ways. Unique to this study is
the dyadic conversational structure, with neural activity simulta-
neously recorded in two patients while they freely talk to each
other. Our findings expand on prior work by showing that the
same contextual embeddings are shared across the brains of
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both speaker and listener. Our findings demonstrate that the
same embeddings also capture the emergence of word-by-
word linguistic features before word articulation during speech
production (Figure 2, blue). LLMs can both comprehend and
generate conversational language, showcasing how understand-
ing and producing language are closely intertwined. We found
that production and comprehension are closely aligned to the
same abstract, context-specific embedding space, providing a
common ground for speakers to transmit their thoughts to one
another.®®



Neuron

Our results demonstrate that the contextual embeddings
learned by an LLM better predict the shared activity between
speaker and listener than non-contextual word embeddings
(Figure 3D), as well as symbolic articulatory (Figure 3F) and syn-
tactic (Figure 3E) features (Figures S4 and S5). LLMs are a
powerful new family of models for investigating the underlying
neural code supporting natural language processing in the hu-
man brain.'®*5% L Ms learn the context-rich meaning of lan-
guage through exposure to other people’s linguistic acts, not
entirely dissimilar from how children learn meaningful language
from their community of speakers. Furthermore, LLMs rely on
simple objectives like self-supervised next-word prediction
(and also from human feedback in recent models®®) to effectively
learn language. These objectives are cognitively plausible and
accessible to human language learners. For example, a recent
study indicates that the brain, like LLMs, actively predicts the
meaning of upcoming words when processing natural spoken
language.'® Finally, unlike the symbolic models of classical psy-
cholinguistics, LLMs are expressive enough to leverage the
complex statistical dependencies of real-world language.
Combined, these parallels may explain why LLM contextual
embeddings prove to be powerful models of the shared,
context-dependent linguistic code necessary for transmitting
our thoughts in open-ended conversations (Figure 3A).

Taking advantage of the high temporal resolution of ECoG, we
were able to map out how linguistic content is shared across lan-
guage areas both within and across brains. We first measured
model-based connectivity among language areas within the
speaker’s and listener’s brains separately. During spontaneous,
natural speech production, we observed a dense network of
model-based connectivity, with many regions encoding similar
features of the linguistic embedding space (Figure 4A). These in-
ter-regional connections include higher-level (IFG, ATL, and
SMG) and lower-level (STG and SM) language areas. Surpris-
ingly, the SM cortex appears to “lead” most other regions in
the speaker’s brain.’ SM and IFG were only moderately
coupled,*’ while ATL plays an unexpectedly large role in speech
production. SM precedes STG during speech production,
potentially reflecting efferent copy or feedback control.”*™** In
some cases, network dynamics were reversed in speaking and
listening. For example, in the speaker’s brain, we see that IFG
precedes STG; in the listener’s brain, on the other hand, we
observe the opposite relationship, where STG precedes IFG
(Figure S16). During language comprehension (Figure 4C),
model-based connectivity revealed a more sparse network
comprising typical language areas proceeding from putatively
lower- to higher-level areas*® (STG, MTG, IFG, and ATL). Finally,
we mapped out how linguistic content is transmitted from the
speaker’s brain to the listener’s brain, revealing asymmetric in-
ter-regional coupling (Figure 4B). The speaker’s SM and the lis-
tener’s STG and IFG are strongly coupled before and after word
articulation. The speaker’s ATL before word onset is aligned to
the listener’s ATL as each word is articulated, perhaps reflecting
the ongoing context that primes each upcoming word. Interest-
ingly, the listener’s SM cortex was not tightly coupled to other re-
gions in the listener’s brain*® but was nonetheless coupled to
several regions in the speaker’s brain (Figures 4, S13, and
S14). Future work may combine, for example, content-agnostic
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partial correlation”” or causal*® methods with this model-based

coupling method to more precisely track the flow of information
within cortical circuits and from speaker to listener.

Prior work on brain-to-brain coupling has relied on content-
agnostic, unmediated methods with no explicit intermediary
model of shared features, such as ISC analysis.”'>*9°" These
unmediated coupling methods can only quantify the magnitude
of speaker-listener neural coupling but cannot capture the
word- and context-specific linguistic information shared be-
tween speaker and listener. In the current manuscript, we devel-
oped a model-based coupling framework that allows us to
assess the transfer of shared linguistic information across brains.
Model-based coupling effectively filters out non-linguistic fea-
tures and ensures that shared neural activity between speaker
and listener is aligned to a common set of explicit linguistic
features. Using this modeling framework, we tested several
competing language models and found that the contextual
embeddings learned by an LLM most robustly capture the
context-specific, word-by-word linguistic information trans-
mitted from brain to brain in conversation. This computational
framework, combined with models that can reproduce real-
world language, marks a paradigm shift from unmediated
brain-to-brain coupling®°> toward a more precise, model-driven
neuroscience of social interaction. Taken together, our research
indicates that contextual embeddings offer an explicit, numerical
model of the same linguistic code that humans use to share their
thoughts with one another.
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Original code This paper DOI:

RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources should be directed to the lead contact, Zaid Zada (zzada@princeton.edu).

Materials availability
This study did not generate new unique reagents.

Data and code availability

All original code has been deposited at Zenodo and is publicly available as of the date of publication. DOIs are listed in the key re-
sources table. Due to the sensitive nature of the unconstrained speech, the data cannot be shared publicly; we will make the data
available to reviewers upon request. Any additional information required to reanalyze the data reported in this paper is available
from the lead contact upon request.

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Electrocorticography acquisition

Twelve participants (6 dyads) engaged in free-form, first-time conversations (Table S5). One dyad was excluded from the analysis
due to a short conversation length (3.56 minutes) and an insufficient number of words spoken (185 and 156 words for each partic-
ipant, respectively). Participants were instructed to discuss any topic, including hobbies, vacation stories, movies, etc. Participants
were recruited from the New York University School of Medicine Comprehensive Epilepsy Center. They provided oral and written
informed consent before study participation, according to the New York University Langone Medical Center Institutional Review
Board. All participants elected to undergo intracranial monitoring for clinical purposes and were informed that their clinical care
was unrelated to participation in this study and that withdrawing from the study at any point would not affect their medical treatment.

Electrode placement was determined by clinicians for each participant based on clinical criteria. Brain activity was recorded from
intracranially implanted subdural platinum-iridium electrodes embedded in silastic sheets (2.3 mm-diameter contacts; Ad-Tech
Medical Instrument). Decisions related to electrode placement and invasive monitoring duration were determined solely on clinical
grounds without reference to this or any other research study. Electrodes were arranged as grid arrays (8 x 8 contacts, 10 mm cen-
ter-to-center spacing) or linear strips.

Recordings from grid, strip, and depth electrode arrays were acquired using the NicoletOne C64 clinical amplifier (Natus Neuro-
logics), band-pass filtered from 0.16-250 Hz, and digitized at 512 Hz. Intracranial electroencephalography signals were referenced
to atwo-contact subdural strip facing toward the skull near the craniotomy site. All electrodes were visually inspected, and those with
excessive noise artifacts, epileptiform activity, or no signal were removed from subsequent analyses.

Presurgical and postsurgical T1-weighted magnetic resonance imaging (MRI) scans were acquired for each participant, and the
location of the electrodes relative to the cortical surface was determined from co-registered magnetic resonance imaging or
computed tomography scans.*® Co-registered, skull-stripped T1 images were nonlinearly registered to an MNI152 template, and
electrode locations were extracted in Montreal Neurological Institute space (projected to the cortical surface) using the co-registered
image.
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Electrode localization

Electrodes were localized to anatomically defined cortical regions based on the Desikan-Killiany atlas in FreeSurfer.>® Regions of in-
terest (ROIs) consisted of one or more of the following atlas labels: somatomotor (SM) cortex, including precentral and postcentral
gyri; superior temporal gyrus (STG), including the posterior superior temporal sulcus; middle temporal gyrus (MTG); middle frontal
gyrus (MFG), comprising rostral and caudal middle frontal gyrus; supramarginal gyrus (SMG); inferior frontal gyrus (IFG), comprising
pars opercularis, pars orbitalis, and pars triangularis; anterior temporal lobe (ATL), comprising anterior inferior temporal cortex and
the temporal pole; superior frontal gyrus (SFG). Electrodes overlapping multiple regions were assigned based on their percent over-
lap with the largest area. Only electrodes in the left hemisphere were considered.

METHOD DETAILS

Signal preprocessing

ECoG data were standardized according to the Brain Imaging Data Structure (EEG-BIDS)®° and preprocessed using the MNE Python
library,>* with accompanying customized Python scripts. The pipeline consisted of the following steps: removing spikes, re-refer-
encing, notch filtering, then high-gamma band extraction. First, large spikes exceeding four quartiles above and below the median
of each channel were removed, and replacement samples were imputed using the SciPy pchip_interpolate function.>®> We then re-
referenced all electrodes in each subject to account for shared signals across channels using an independent component analysis
method.®’ We removed line noise at 60, 120, and 180 Hz frequencies using MNE’s notch_filter function with a width of 2 Hz. Finally,
we estimated broadband power at 70-200 Hz (high gamma) using an lIR filter followed by a Hilbert envelope computation to estimate
the instantaneous magnitude of the signal (using filter and apply_hilbert(envelope=True) from MNE). High-frequency broadband po-
wer has been shown to correlate with local neural firing rates.®?=°° In this study, we estimated the amplitude of the Hilbert-trans-
formed signal. It has been argued that this transformation inaccurately estimates phase angles.®® Since we do not use the phase
estimates to assess inter-brain synchrony in this manuscript, our results are not subject to this concern.

Transcription and alignment

We recorded each conversation’s audio with a microphone at the full 44,100 Hz rate. In addition, the clinical amplifier also received
the microphone output and was saved at 512 Hz. Each conversation was manually transcribed, and each utterance was manually
identified to a speaker and aligned to the audio. Sounds such as laughter, breathing, or inaudible speech were marked to improve
the alignment’s accuracy. Punctuation and capitalization were included to the best ability of the transcriber. The Montreal Forced
Aligner®® was used to align the audio to the transcript automatically and to compute onsets and offsets for each word. The number
of words per conversation is reported in Table S6. To finely align the audio with the brain activity, we cross-correlated the microphone
audio (44,100 Hz) envelope with the clinical amplifier audio (512 Hz) envelope. The lag of the peak correlation was used to translate
the word onsets to match the brain data. We further validated this alignment in two ways: first, by cross-correlating the ECoG signal
with a downsampled version of the audio envelope. Most electrodes in STG exhibited clear peaks with small latency in the correlo-
gram. Second, we extracted epochs around the onset for each word and averaged them into one “evoked” response. This showed a
clear peak after onset in the audio envelope and in several electrodes.

Contextual embedding extraction

We used the pre-trained extra-large version of GPT-222 with 48 layers in the HuggingFace Transformers library.>” We first converted
all words from the raw transcript to GPT-2-specific tokens (full words and subwords) and then to integer identifiers. We supplied the
model with each token up to the maximum allowed by the 1024-token context window to extract the embedding from the activations
(hidden states) of the final word in the sequence. Embeddings at each layer are 1,600-element numerical vectors. Only the middle
24th layer was considered in subsequent analyses, as middle layers have been shown to be better predictors of neural activity.?%”
Finally, sub-word token embeddings were averaged for each whole word to harmonize with the original transcript. To compare
embedding spaces, this same procedure was used to extract embeddings from an untrained GPT-2 model—with random initial
weights but the same architecture, context window, and inputs. We also extracted static, non-contextual GPT-2 embeddings cor-
responding to the token embedding weights learned by the model. As a final control, we generated random normal embeddings with
the same dimensionality as GPT-2 embeddings (1,600 features) for each word instance: thus, two instances of the same word would
receive two separate random embeddings (to mimic the fact that actual GPT-2 embeddings differ for different instances of the same
word across contexts).

In order to demonstrate that our results generalize to other large language models that also capture a similar shared linguistic
space, we replicated our core analyses using the widely studied masked language model BERT.*> We used the large, cased,
whole-word-masking version of BERT from the HuggingFace library. We divided each transcript into utterances composed of one
or more sentences. One speaker produced each utterance at a time. Then, each utterance was prepended with the words that ap-
peared before it, if any, to fill up the maximum context length of the model (512 tokens). Once fed into the model, we extracted the
activations corresponding only to the utterance in consideration of that input and not the context. These activations were taken from
the middle layer to match our procedure with GPT-2.

e2 Neuron 712, 3211-3222.e1-e5, September 25, 2024



Neuron ¢ CellP’ress

OPEN ACCESS

Contextual embeddings extracted from large language models (like GPT-2) concurrently encode multiple linguistic dimensions
embedded in natural language. We use the term “linguistic content” to refer to all the different linguistic features encoded in the
LLM embedding space—this comprises many correlated features of natural text, including syntactic, lexical-semantic, and contex-
tual features, which may also be correlated with non-textual articulatory and phonemic features. These linguistic dimensions are en-
tangled in natural language, and simply observing that a model predicts brain activity to some extent does not allow us to attribute this
prediction performance to some particular linguistic dimension or feature.®®°°

Encoding analysis

Alinear model was estimated using ridge regression to predict the neural signal separately for each electrode and every lag relative to
word onset. We used the full 1,600 contextual embedding from the language model as the predictors. Two encoding models were
estimated for each subject: one for words they produced as a speaker and a separate model for words they heard as a listener. The
neural signal was divided into epochs for every word (separately for spoken or heard words). Each epoch ranges from -4 sto +4 sin
129 bins of 250 ms overlapping frames with jumps of 62.5 ms (see Figure S17 for the relation of the 250 ms window size to results). We
fit a different encoding model for each electrode and lag using ridge regression to resolve the temporal dynamics of linguistic encod-
ing. Thus, the predictor matrix contains a row for each word comprising its model-based representation (e.g., GPT-2 embeddings),
and the multiple ridge regression is used to predict a target matrix shaped number-of-words by number-of-lags for each electrode.
Each target variable comprises the amplitude of high-gamma neural activity for that word at a specific lag relative to word onset and
for a specific electrode. Each encoding model was trained separately, independently of encoding models trained for other lags and
electrodes. The encoding model was evaluated by computing the Pearson correlation coefficient between actual and predicted neu-
ral signals for left-out test sets using 10-fold cross-validation. The data was split consecutively (i.e., into temporally contiguous seg-
ments) for cross-validation so as to minimize the autocorrelation between training and test folds. The final correlation values reported
in the text are the average correlation across all test folds. We used the RidgeCV implementation from the Himalaya Python library”’® to
fit the encoding models. Regularization coefficients (i.e., L2 penalty terms) were selected from 20 log-spaced values ranging from 1 to
1,000,000 using random search with nested cross-validation (5-fold inner cross-validation for hyperparameter selection within each
training fold of the outer 10-fold cross-validation loop; as implemented in Himalaya). Note that for both the predictor matrix of em-
beddings and the target vector for each electrode, the number of samples corresponds to the number of words (not the number
of time points).

Electrode selection

We first performed a permutation test to generate a null distribution based on phase-randomized neural signals to select electrodes
involved in language production and comprehension for further analysis. Phase randomization effectively decouples the time series
of neural activity from the onsets/offsets of each word and utterance. For each of the 1,000 permutations, we fit the same ridge-
regression encoding models described above based on static, non-contextual GPT-2 embeddings across all electrodes and lags
(Figure S18). The null distribution was constructed from the maximum encoding performance across lags; one p-value per electrode
was calculated according to its own null distribution. Constructing the null distribution from maximum encoding performance values
across lags effectively controls for multiple tests across lags.”" We then controlled the false discovery rate (FDR)’“ at an alpha value of
1% to control for multiple tests across the p-values at each electrode for production and comprehension in each subject. The final
number of selected electrodes per subject per region is detailed in Table S7. Of all selected electrodes, 231 were from grids, 87 were
from strips, and 18 were depth electrodes.

To focus on electrodes that encode linguistic content, we performed a randomization test by re-estimating within-subject produc-
tion and comprehension encoding models on phase-randomized neural data (p < .01, FDR corrected); these models were estimated
from non-contextual, static GPT-2 embeddings. We opted to use non-contextual embeddings for electrode selection to minimize
selection bias for the contextual embeddings. However, alternative electrode selection criteria replicate the same qualitative result
(Figure S19).

Model-based brain-to-brain coupling
The contextual embeddings learned by LLMs are a precise, mathematically explicit model of the geometric structure of real-world
language. In our study, we position these contextual embeddings as a shared feature space mediating brain-to-brain coupling, a
common basis onto which both speaker and listener converge. Our model-based brain-to-brain coupling framework quantifies
how closely speaker and listener are aligned to this explicit model of linguistic structure—word-by-word in real-time, interactive con-
versations. This modeling framework allows us to effectively track the flow of linguistic information from one brain to another in un-
constrained dialogues. Critically, unlike previous applications of encoding models to language comprehension, our approach ad-
dresses the specific challenge of real-time, dyadic interactions: each participant’s brain is affecting the other participant’s brain,
resulting in a unique, irreplicable experience in each conversation. We use the term “model-based coupling” to express this effort
to explicitly model real-time, dyadic processing between two interacting brains.

We used the trained encoding models (i.e., the learned weight matrices) from the within-speaker and within-listener analyses and
assessed how well the models generalize across brains, from speaker to listener (and vice versa) at varying lags. Typically, separate
encoding models are trained and tested within each subject, within each electrode/voxel, and evaluated in terms of how well they

Neuron 712, 3211-3222.e1-e5, September 25, 2024  e3




¢ CellPress Neuron

OPEN ACCESS

generalize to novel stimuli.”>"* Previous research has developed methods for evaluating how encoding models generalize across
subjects,”®"® across different brain areas,”” and across different tasks/processes, like reading and listening.”® In the current manu-
script paper, our scientific question demanded that we develop a framework for assessing five types of generalization simulta-
neously: testing encoding model generalization (1) across segments of the stimulus (using 10-fold cross-validation), (2) across sub-
jects (within speaker-listener dyads), (3) across different brain regions (e.g., from SM to STG electrodes), (4) across tasks/processes
(speaking/production and listening/comprehension), and (5) across lags’® (e.g., speaker pre-word onset to listener post-word onset).

The production models are estimated separately at each lag relative to word onset (and therefore yield different predictions for
each lag). For this reason, we computed correlations between the model-predicted activity and actual neural activity at each pair
of lags ranging from -4 s to +4 s between speaker and listener. This analysis is not strictly symmetric if performed in the opposite
direction: model-based predictions from the encoding model estimated in the listener (the comprehension model) evaluated against
the speaker’s actual neural activity. For this reason, we performed the same intersubject encoding analysis for the listener: we
computed comprehension model predictions derived from the listener, correlated these with the speaker’s actual neural activity,
then averaged these correlations with those computed from the production model and evaluated against the listener’s neural activity.
In practice, the results for both directions are very similar (Figure S2).

This analysis yields model-based predictions (and the corresponding actual neural activity) for every word at each lag and each
electrode. To construct a lag-by-lag matrix that summarizes across electrodes (e.g., across all electrodes as in Figure 3, or across
electrodes within a given language area as in Figure 4), we averaged the model-predicted activity and actual activity (retaining lags)
prior to computing the correlation between predicted and actual neural activity. This correlation value is visualized at each pair of lags.
We perform this process for each speaker-listener pair, and the final correlations are summarized across dyads using a weighted
average, where the weights correspond to the relative number of words for each dyad; this weighted averaging procedure mitigates
variance in correlations derived from small training/test folds in dyads with fewer words. Each row of the resulting matrix indicates
how well the model-based predictions for a given speaker lag (the row index) match the listener’s brain activity at each lag. The di-
agonal represents the same (i.e., matching) lag between speaker and listener; anything below the diagonal indicates that the speaker
precedes the listener. The bottom half of the matrix corresponds to speaker-listener linguistic coupling based on the speaker’s brain
activity prior to word onset. The right half of the matrix corresponds to the speaker-listener linguistic coupling based on the listener’s
brain activity after word onset. The bottom right quadrant of the matrix corresponds to pairs of lags where the linguistic content of the
speaker’s brain prior to word onset is coupled to the linguistic content of the listener’s brain after word onset.

This same procedure was applied across regions within-speaker and within-listener. Usually, encoding models within subjects are
trained on one electrode (and one lag), and the correlation between the model’s predictions and the actual activity of the same elec-
trode (and lag) is evaluated on a held-out test set. Following the same procedure as above, we can evaluate the encoding model
predictions for one region against another region. This tests whether two brain regions in the speaker (or listener) use the same lin-
guistic features from the embedding space. We ran this procedure for all pairs of regions within-speaker (Figure 4A and S13) and
within-listener (Figures 4C and S14).

In all cases, performance is evaluated by computing correlations across the same sets of test words. In the case of the core model-
based coupling analyses, we use the same predictions generated from the models trained for within-subject encoding analysis. We
then compute correlations between the model-predicted activity derived from one subject (e.g., the speaker) and actual activity in the
other subject (the listener) across a left-out set of test words unseen by the model. In the within-subject model-based connectivity
analyses, correlations are computed between model-predicted activity derived from one region and actual activity in another region
(in the same subject) across the test words. In the ISC analyses, correlations are computed between actual brain activity in one sub-
ject (e.g., the speaker) and another (e.g., the listener) for the matching set of test words.

For comparison, we computed intersubject correlation (ISC)>#° by applying the same procedure as above, but instead of using
predicted neural activity from encoding models, we computed the correlations between the actual speaker neural activity and actual
listener neural responses for the corresponding test sets.

Note that in all cases, we first fit encoding models separately for each electrode (and each lag); this is the highest level of precision
for model fitting. There are several possible ways to summarize model performance across electrodes. We assessed three different
summarization methods to ensure our core results were not an artifact of a particular summarization procedure. First, we averaged
the model-predicted activity for the test words across all electrodes in the brain (Figure 3 and S1A) or within ROls (Figure 4) and corre-
lated this with the actual activity for the test words averaged across all electrodes. Second, we computed the correlation between
model-predicted and actual test activity for every possible pair of electrodes from speaker to listener (Figure S1B). Although aver-
aging improved our predictive power, the results were similar in both versions. Third, we averaged the model-predicted (and actual)
activity within ROls and then correlated the ROI-averaged model-predicted and ROI-averaged actual activity across brains. We then
averaged the 64 ROI-pair correlation matrices into one whole-brain correlation matrix to summarize across the entire brain (Fig-
ure S1C). This approach yielded qualitatively similar results to the summarization methods used in panels A and B.

Model comparison framework

We use a formal model comparison framework to make more specific claims about what kinds of information are encoded in brain
activity. Our approach follows the logic of the “late commitment”®' and “system identification”®? frameworks, where hypotheses are
formulated as explicit computational model comparisons evaluated against naturalistic brain data using out-of-sample prediction.
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For example, we evaluate the hypothesis that contextual information is encoded in neural activity during natural conversations by
comparing encoding model performance for contextual embeddings from GPT-2 to encoding model performance for non-contextual
embeddings extracted from GPT-2 (Figures S4 and S5). The model’s architecture, objective function, and dimensionality are held
constant in this comparison. The static “control” embeddings—the pre-contextual embeddings from the input layer of the
model—capture only word-level lexical-semantic information and do not incorporate contextual information from preceding words;
on the other hand, the contextual embeddings we evaluate have passed through multiple layers of the transformer where the self-
attention mechanism incorporates contextual information from previous words into the current embedding. In this study, we do not
aim to explicitly disentangle the overarching context from the meaning of individual words,”” or explore varying scales of prediction.®*

We compare encoding performance for embeddings with two additional feature sets inspired by classical psycholinguistics. First,
we include a phonemic model capturing articulatory speech features.”® Specifically, for each phoneme, we constructed a unique
binary vector with 22 features®*: consonant features include the manner of articulation, place of articulation, and whether the con-
sonant was voiced or unvoiced; vowel features included height (e.g., high, mid, low) and front-to-back position (Table S2). Second,
we include a syntactic model based on two complementary feature sets: we used SpaCy to extract part-of-speech tags for each
word, as well as syntactic relations between words (based on a dependency parse tree) in an utterance (e.g., nominal subject, mod-
ifier, root, etc), resulting in a 75-dimensional binary vector (Tables S3 and S4). Unlike the continuous, vector-space embeddings
capturing contextual (or non-contextual lexical-semantic) meaning, these indicator variables capture the occurrence of discrete,
symbolic labels for articulatory or syntactic features. We submit these features to encoding analysis using the same procedure
we used for contextual embeddings (Figures 3 and S4).

QUANTIFICATION AND STATISTICAL ANALYSIS

To evaluate the statistical significance of the lag-by-lag intersubject encoding matrix, we generated a null distribution of intersubject
encoding for each pair of lags based on phase-randomized neural signals. We re-estimated encoding models for each of the 1,000
phase permutations. For the whole-brain analysis (Figure 3A), we computed 1,000 iterations of the lag-by-lag correlation matrix using
the phase-randomized models for both speaker and the listener. Specifically, we correlated the speaker’s phase-randomized
model’s predicted neural activity with the listener’s actual neural activity and vice-versa (i.e., the same as intersubject encoding,
except with the perturbed model). This procedure used the same selected electrodes as the non-randomized analyses. The
maximum value across all pairs of lags in each matrix was submitted to the null distribution to control for multiple tests across pairs
of lags. Lag pairs were considered significant at an alpha value of 1% based on this distribution, corresponding to an intersubject
encoding performance (correlation) value of .052 (p < .01, FDR corrected) (Figures 3B and S3).

To evaluate the significance of inter-regional intersubject encoding analysis (Figure 4), we generated a null distribution using the
encoding models estimated from phase-randomized neural data. The lag-by-lag intersubject encoding correlation matrix was
computed once for each pair of speaker-listener regions (8 x 8), resulting in 1,000 permutation correlations for each pair of regions
and each pair of lags (129 x 129). Because of unique electrode coverage per participant and the electrode selection process, the
number of subjects and electrodes in each pair of regions differed. To ensure the reliability of these correlations across subjects,
we only considered pairs of regions with at least four subjects (Figures S13-S15). We computed p-values for each pair of regions
and each pair of lags based on the corresponding null distribution, then used Bonferroni correction to control the family-wise error
rate at 5% across pairs of ROIs and pairs of lags. Any resulting pair of ROls with at least 20 adjacent pairs of significant lags were
deemed significant overall (gray lines in Figure 4). The same statistical analysis was applied to the within-speaker (Figure S13)
and within-listener (Figure S14) region pairs.

We also tested for a significant difference between intersubject encoding using contextual, model-trained embeddings against
static and untrained model embeddings (Figures 3 and S5). To do this, we compared the observed difference against the 10,000 per-
mutation differences, where we randomly assigned the observation per speaker (10) and per fold (10) to either sample. The resulting
p-values were correlated for multiple comparisons with FDR at p < 0.01.
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