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Abstract 

Natural language comprehension is a complex task that relies on coordinated activity across a network 
of cortical regions. In this study, we propose that regions of the language network are coupled to one 
another through subspaces of shared linguistic features. To test this idea, we developed a 
model-based connectivity framework to quantify stimulus-driven, feature-specific functional 
connectivity between language areas during natural language comprehension. Using fMRI data 
acquired while subjects listened to spoken narratives, we tested three types of features extracted from 
a unified neural network model for speech and language: low-level acoustic embeddings, mid-level 
speech embeddings, and high-level language embeddings. Our modeling framework enabled us to 
quantify the stimulus features that drive connectivity between regions: early auditory areas were 
coupled to intermediate language areas via lower-level acoustic and speech features; in contrast, 
higher-order language and default-mode regions were predominantly coupled through more abstract 
language features. We observed a clear progression of feature-specific connectivity from early auditory 
to lateral temporal areas, advancing from acoustic connectivity to speech- and finally to 
language-driven connectivity. These findings suggest that regions of the language network are 
coupled through feature-specific communication channels to facilitate efficient and context-sensitive 
language processing.  
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Introduction 

Language is a fundamental part of everyday human behavior that allows us to communicate complex 
ideas from one person to another. Our ability to understand language is remarkably efficient given the 
complexity of the task. As we listen to spoken language, we rapidly convert acoustic signals into 
words, link words into complex grammatical structures, and integrate all of these patterns into a 
holistic understanding of the discourse or situation (Christiansen & Chater, 2016). In most cases, we 
do this effortlessly. Language comprehension emerges from the coordinated activity of a number of 
different brain areas. A large body of research on the neurobiology of language has identified a highly 
interconnected network of cortical regions that are selectively engaged during language processing 
(Hickok & Poeppel, 2007; Friederici, 2011; Price, 2012; Fedorenko et al., 2024). How these language 
regions coordinate with one another to support efficient language comprehension, however, remains 
unclear. 

Regions of the language network are both structurally interconnected (Catani et al., 2005; Duffau, 
2008; Saur et al., 2008; Friederici, 2009; Turken & Dronkers, 2010; Dick et al., 2014) and functionally 
integrated (Hampson et al., 2002; Lee et al., 2012; Tomasi & Volkow, 2012; Blank et al., 2014; Tie et al., 
2014; Zhu et al., 2014; McAvoy et al., 2016; Kong et al., 2021; Du et al., 2024; Salvo et al., 2025). 
Recent work, for example, has shown that language areas are functionally interconnected even during 
rest and non-linguistic tasks (Braga et al., 2020; Shain & Fedorenko, 2025). However, traditional 
within-subject functional connectivity (WSFC) metrics cannot distinguish between intrinsic and 
extrinsic (i.e., stimulus-driven) co-fluctuations between regions. A between-subject approach is 
becoming increasingly common in naturalistic neuroscience, whereby intersubject correlation (ISC) 
analyses isolate stimulus-evoked activity within a brain region (Hasson et al., 2004; Nastase et al., 
2019). Following the logic of ISC, intersubject functional connectivity (ISFC) has been used to isolate 
stimulus-driven connectivity between regions in response to naturalistic stimuli such as spoken 
narratives (Simony et al., 2016). However, ISFC captures the stimulus-driven components of functional 
connectivity in a data-driven fashion that is agnostic to the content of the stimulus shared between 
regions: any features of the stimulus can drive connectivity between any two regions. ISFC can tell us 
where and how much connectivity is driven by the stimulus, but not which stimulus features are driving 
the connectivity. 

How can we begin to unravel what linguistic features are shared across different language regions? A 
growing body of recent work indicates that different kinds of linguistic structures (e.g., syntax and 
semantics) appear to be co-localized across language areas (Fedorenko et al., 2012, 2016; 2020; 
Wehbe et al., 2014; Blank et al., 2016; Nelson et al., 2017; Caucheteux et al., 2021; Reddy & Wehbe, 
2021; Toneva et al., 2022; Kumar, Sumers et al., 2024; Shain et al., 2024), and most language areas 
display similar response profiles to a variety of language tasks (Fedorenko et al., 2024). These 
observations create a certain tension: surely, different language areas contribute differently to the 
overall circuit, but why do we observe such overwhelming functional similarity across regions? From a 
computational perspective, one possible explanation for this tension is that different areas of the 
language network may interact through a “communication subspace” of shared features (Semedo et 
al., 2019). For example, in visual areas, one region is coupled to another via fluctuations along a subset 
of dimensions in the population-level activity space (Semedo et al., 2019; Kohn et al., 2020; 
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MacDowell et al., 2025). Perhaps different regions of the language network rely on a shared, 
multidimensional embedding space of linguistic features to efficiently coordinate their contributions to 
the network as a whole. Interestingly, modern large language models (LLMs) appear to rely on a similar 
geometric mechanism of connectivity: the circuits across layers of an LLM interact with one another by 
gradually refining linguistic representations as they proceed through a high-dimensional embedding 
space shared across layers (Elhage et al., 2021). This so-called “residual stream” serves as a 
communication channel across layers and is thought to be critical to the capacity of LLMs to capture 
the rich, content-specific structure of natural language. 

In this study, we hypothesized that different regions of the language network are coupled to one 
another via a multidimensional space of linguistic features. This hypothesis is inspired by modern 
neural network models for speech and language, which integrate phonemic, syntactic, and semantic 
features into a unified neural population code (e.g., Radford et al., 2023), and construct increasingly 
refined representations by modifying a high-dimensional embedding space that is shared from layer to 
layer (Elhage et al., 2021). In a similar way, we hypothesize that two regions of the language network 
may harmonize their contributions to language comprehension via a shared subspace of linguistic 
features. Our hypothesis yields two predictions. First, functional connectivity between one language 
region and another should result from moment-to-moment, stimulus-driven covariation along a shared 
subset of linguistic features. Second, as we proceed along the cortical processing hierarchy, 
connectivity should be driven by increasingly abstract linguistic features. Given the mixed selectivity 
(or “polysemanticity”) of neural population codes (Fusi et al., 2016; Elhage et al., 2022; Bricken et al., 
2023), we expect some low- and mid-level features to be retained even as other features become 
increasingly complex; we refer to this as a “soft hierarchy”. 

To test these predictions, we developed a novel model-based framework for quantifying 
stimulus-driven, feature-specific co-fluctuations in neural activity between one region and another. 
This model-driven framework provides a theoretical advance over content-agnostic metrics of 
functional connectivity (both WSFC and ISFC) by allowing us to test explicit, feature-specific models of 
the functional connectivity between language areas. To this end, we decomposed two spoken stories 
into low-level acoustic, mid-level speech, and high-level language features based on embeddings 
extracted from the Whisper speech and language model (Radford et al., 2023). We tested these model 
features against naturalistic fMRI data acquired while subjects listened to the same spoken stories. 
Our findings reveal a soft processing hierarchy where language areas are coupled along shared 
acoustic, speech, and language features, and connectivity from lower- to higher-order areas is driven 
by progressively more refined linguistic features. 

 

Results 

To investigate how regions of the language network coordinate their activity during naturalistic 
language comprehension, we developed a model-based framework that quantifies stimulus-driven, 
feature-specific functional connectivity between brain areas. Before reporting our core results, we first 
develop the theoretical motivation for our approach and validate our models within each brain region. 
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ISC analysis (Hasson et al., 2004; Nastase et al., 2019) has been used, initially, to isolate the 
stimulus-driven component of neural activity within a given brain region (Fig. 1a). In separate subjects 
(scanned at separate times), the stimulus is the only shared factor that could drive shared activity. 
However, ISC analysis is data-driven and content-agnostic: it can tell us where and how much activity 
is driven by the stimulus, but it cannot determine what stimulus features drive neural activity (Zada et 
al., 2024). To quantify what stimulus features are driving activity in a given brain region, we use 
parcel-wise encoding models to quantify which explicit linguistic features are encoded in brain activity 
(Wu et al., 2006; Nalesaris et al., 2011; Huth et al., 2016; de Heer et al., 2017; Dupré la Tour, Visconti di 
Oleggio Castello et al., 2025; Fig. 1b). 

To quantify the linguistic features of the stimulus, we utilized a state-of-the-art transformer-based 
neural network model for speech recognition, known as Whisper (Radford et al., 2023). We elected to 
use Whisper because it is a unified acoustic-to-speech-to-language model that learns how to map the 
acoustic signals of natural speech into language representations useful for natural language tasks like 
next-word prediction and transcription (Fig. 1c). The “encoder” component of the model learns to 
extract linguistic features from acoustic inputs, whereas the “decoder” component extracts linguistic 
features from text inputs. We extracted three types of linguistic features from Whisper: (1) low-level 
“acoustic” embeddings from the input to the transformer stack of the encoder: (2) mid-level “speech” 
embeddings from the final layer of the encoder; and (3) high-level, more abstract “language” 
embeddings from a late-intermediate layer of the decoder. These three sets of embeddings capture 
increasingly abstract and contextual features of spoken language that the model uses to perform 
natural language tasks (Goldstein et al., 2025). All three embeddings were of the same dimensionality 
(1024 dimensions). 

We evaluated our models against fMRI data comprising N = 46 participants, each of whom listened to 
two different ~13-minute spoken stories (Nastase et al., 2021). To reduce computational demands, we 
first reduced the voxel-level time series into 1,000 parcel-level time series derived from a functional 
atlas (Schaefer et al., 2018). We used banded ridge regression to fit parcel-wise encoding models 
jointly across all three sets of features (acoustic, speech, and language embeddings; Dupré la Tour et 
al., 2022). This allows all three types of linguistic features to compete for variance in the neural activity 
fairly. To test the alignment of linguistic features with human brain activity, we generated predictions 
from each of the three feature bands for the left-out data and computed the correlation between the 
model-predicted and actual brain activity at each parcel. We also computed the joint model 
performance, which corresponds to the sum of the predictions for each of the three feature bands. To 
more closely match the formulation of ISC, we estimated encoding models within each subject and 
evaluated their performance across subjects by computing the correlation of model-based predictions 
from one subject with the average actual time series across all other subjects. While this intersubject 
encoding approach differs from much prior work (e.g., Huth et al., 2016; Schrimpf et al., 2021; 
Goldstein et al., 2022, 2025; cf. Van Uden, Nastase et al., 2018; Nastase et al., 2020b; Zada et al., 
2024), the focus of our analyses is ultimately on what features are shared between regions (not 
between subjects). To further ensure the generalizability of our findings, we estimated all models within 
one story and evaluated their performance in predicting the other story (and vice versa; Fig. S1). 
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Overall, this modeling framework allows us to quantify how well the model features linearly align with 
human neural activity during complex, naturalistic language comprehension. 

Modeling the soft hierarchy of linguistic features across the language network 
We first localized language areas involved in processing the story stimuli using a conventional ISC 
analysis, which identifies parcels where neural activity is synchronized to the stimulus (Fig. 1a). ISC 
analysis revealed a large-scale cortical network for spoken narrative comprehension comprising 
low-level auditory areas, language areas, and higher-level default-mode areas (Fig. 1d) (Nastase et al., 
2021). Next, we evaluated the joint encoding model performance combined across all three feature 
bands from the Whisper model using our intersubject encoding approach (Fig. 1b). The resulting joint 
model predicted neural activity across much of the language network, including parcels in 
frontotemporal language regions, as well as in posterior medial cortex (PMC), superior frontal language 
area (SFL), dorsomedial prefrontal cortex (dmPFC; Fig. 1e,g). The joint model performance map 
captures a subset of regions identified by the ISC analysis, suggesting that ISC identifies certain 
stimulus features of spoken stories that are not represented in the embeddings extracted from the 
Whisper model. 

We then evaluated predictions derived separately from each of the three feature bands. By visualizing 
the top-performing feature at every parcel (Fig. 1f), we identified a coarse processing hierarchy where 
acoustic features dominate in superior temporal auditory areas, speech features are more sparsely 
distributed along temporal cortex and higher-level areas, and the language features dominate in lateral 
temporal areas (both anterior and posterior) and inferior frontal gyrus (IFG). The acoustic model 
performance was largely confined to the early auditory cortex (EAC) and superior temporal gyrus 
(STG), with punctate clusters in middle frontal gyrus (MFG; Fig. 1g). Speech model performance 
extended from EAC and STG anterolaterally to superior temporal sulcus (STS), and included portions 
of right IFG (Fig. 1g). Language embeddings predicted a broader array of language regions, including 
parcels in both anterior and posterior lateral temporal cortex, IFG, as well as PMC, SFL, dmPFC (Fig. 
1g). These results are generally consistent with prior work using encoding models to map linguistic 
features onto cortical activity (e.g., Wehbe et al., 2014; Huth et al., 2016; de Heer et al., 2017; 
Goldstein et al., 2025). In line with the notion of a soft hierarchy, we found significant overlap among 
the feature-specific model performance maps, suggesting that many cortical areas encode mixed 
acoustic, speech, and language features (Fig. 1g). 
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Fig. 1. Modeling stimulus-driven, feature-specific neural activity during natural language comprehension. 
(a) Intersubject correlation is a data-driven, model-free method for quantifying the stimulus-driven component of 
neural activity within a given region. (b) To quantify the activity driven by specific stimulus features, we construct 
parcel-wise encoding models using explicit linguistic features extracted from a computational model. Encoding 
models are evaluated within a given brain region by correlating model-predicted activity with the actual activity in 
a left-out subject or group of subjects (in the same way as ISC analysis). (c) We extract three types of linguistic 
features from a unified transformer-based speech and language model called Whisper: acoustic (orange), speech 
(red), and language (blue) feature representations (i.e., embeddings) of the stimulus. The schematic shows a 
more detailed version of the model depicted in (b). For more details on the encoding model approach, refer to 
Fig. S1. Dashed lines indicate correlation; solid lines indicate model input/output. (d) We computed ISC within 
1,000 cortical parcels for two story-listening fMRI datasets. Parcels with significant ISC (p < .05) were further 
thresholded at 0.10 for visualization. Encoding models were estimated across all three feature bands using 
banded ridge regression. (e) Performance for the joint model (i.e., encoding model fit jointly using all three feature 
bands) and thresholded in the same way (e). (f) The best-performing feature band was identified for each parcel. 
(g) The joint model performance can be decomposed into feature-specific performance values. 

Modeling stimulus-driven, feature-specific connectivity between language areas 
Next we turned to the core question of this manuscript: How can we quantify the stimulus-derived 
linguistic features driving connectivity between regions of the language network? First, by extending 
the same logic as ISC, we can use ISFC analysis to quantify the stimulus-driven connectivity between 
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brain areas, effectively filtering out idiosyncratic noise and the intrinsic fluctuations that play a large 
role in traditional WSFC (Simony et al., 2016; Fig. 2a). ISFC analysis yields a parcel-by-parcel matrix of 
stimulus-driven connectivity values between pairs of brain regions. The diagonal of this matrix 
corresponds to the within-region ISC values (Fig. 1a). Similar to both ISC analysis and WSFC analysis, 
ISFC analysis is a data-driven method that indicates where and how much stimulus-driven 
connectivity exists between two regions; however, it does not reveal what features of the stimulus 
drive that connectivity. 

To quantify what stimulus features are shared between different brain regions, we again used explicit 
linguistic embeddings extracted from the Whisper model. We use the same parcel-wise encoding 
models trained within each parcel from the previous section. In our model-based connectivity analysis, 
we now evaluate these models in terms of how well their predictions generalize to other parcels in the 
same fashion as the ISFC analysis. We generate model-based predictions for one parcel, then 
correlate these predicted time series with the average actual time series of the remaining subjects 
across all pairs of parcels (Fig. 2b). This model-based functional connectivity analysis results in a 
parcel-by-parcel matrix of feature-specific connectivity values between pairs of parcels (Toneva et al., 
2022; Meschke et al., 2023; Zada et al., 2024). In this case, the diagonal of the connectivity matrix 
corresponds to the within-parcel intersubject encoding model performance (Fig. 1b). This analysis 
effectively filters the connectivity between regions based on what can be captured by an explicit 
feature space. 

We first visualized the conventional ISFC matrix (Fig. 2c) and the joint model-based connectivity 
matrix based on the combination of all three sets of linguistic features (Fig. 2d). The joint model 
connectivity matrix appears to recapitulate some but not all of the stimulus-driven connectivity 
structure in the ISFC matrix, albeit with lower correlation values. We also constructed model-based 
connectivity matrices based on predictions derived from each of the three types of linguistic features. 
When examining the best-performing feature band at each connection, we see relatively focal 
connectivity for the acoustic embeddings, sparse connectivity for the speech embeddings, and more 
widespread connectivity for the language embeddings (Fig. 2e). The acoustic model best captured 
shared connectivity within EAC and between EAC and STG/S parcels. In contrast, the language model 
outperformed the other two models in capturing shared connectivity within and between STG/S and 
IFG/S parcels. Model performance was comparatively lower in the temporoparietal junction (TPJ) and 
PMC regions, with mixed results across models. Overlapping patterns of connectivity across matrices 
for the three types of stimulus features suggest that many edges may be captured by overlapping sets 
of features (Fig. 2f). To simplify visualizing the connectivity matrices, we focused on a subset of 280 
cortical parcels spanning 23 regions of interest (Fig. 2g) associated with language comprehension 
based on the ISC results (Fig. 1d). These model-based functional connectivity matrices serve as the 
basis for all of the subsequent analyses in the manuscript. 

7 

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted June 3, 2025. ; https://doi.org/10.1101/2025.06.02.657491doi: bioRxiv preprint 

https://doi.org/10.1101/2025.06.02.657491
http://creativecommons.org/licenses/by-nc/4.0/


 

Fig. 2. Modeling stimulus-driven, feature-specific functional connectivity during natural language 
comprehension. (a) Following the logic of ISC, intersubject functional connectivity (ISFC) quantifies the 
stimulus-driven connectivity between brain areas in a data-driven, model-free fashion. The diagonal of the ISFC 
matrix corresponds to the within-parcel ISC values. (b) To quantify feature-specific model-based connectivity, 
we evaluate encoding models based on the three sets of linguistic features extracted from Whisper across pairs 
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of parcels. The diagonal of the resulting model-based connectivity matrix corresponds to the within-parcel 
intersubject encoding performance values. Dashed lines indicate correlation; solid lines going into and out of the 
model indicate model input/output. (c) A parcel-by-parcel ISFC matrix was computed for all pairs of parcels 
within language areas. The joint model-based connectivity matrix (d), as well as feature-specific model 
connectivity (model FC) matrices (f) were computed in the same way as the ISFC matrix for each subject and 
were averaged across subjects for visualization. Feature-specific ISFC matrices were computed based on 
acoustic, speech, and language embeddings extracted from the Whisper model. (e) The best-performing model 
at each edge was chosen as the model with the correlation value closest to the original ISFC value at that edge. 
The best model map is thresholded to include only edges that are positive in the original ISFC matrix. (g) All 
connectivity matrices are visualized for a set of 280 parcels spanning functionally defined language regions (see 
Regions of Interest section under Methods for details on how these regions were defined). 

Language regions are coupled via distinct and overlapping subspaces of linguistic features  
For a more quantitative assessment of the encoding space underlying the shared network structure 
during language comprehension, the original ISFC matrices served as an index of the reliable, 
stimulus-driven connectivity between cortical areas. In contrast, the model connectivity matrices 
allowed us to isolate elements of this connectivity driven by specific stimulus features. We quantified 
the feature-specific model-based connectivity values within and between eight regions of interest 
ranging from low- to high-level areas for spoken narrative comprehension: EAC, STG/S, IFG/S, TPJ 
angular gyrus (TPJ AngG), TPJ inferior parietal lobule (TPJ IPL), PCM A, PMC B, and PMC C (Fig. 3a). 
We first examined the average local connectivity across all edges connecting parcels within a given 
region (Fig. 3b). We found that model connectivity among parcels within EAC was best predicted by 
acoustic (A) features, followed by speech (S) features, then language (L) features (A vs. S: t = 5.40, pFDR 
< .001; S vs. L: t = 7.70, pFDR < .001; A vs. L: t = 9.39, pFDR < .001). The opposite was true for 
connectivity among parcels within STG (A vs. S: t = -10.84, pFDR < .001; S vs. L: t = -9.09, pFDR < .001; 
A vs. L: t = -15.15, pFDR < .001), IFG (A vs. S: t = -11.54, pFDR < .001; S vs. L: t = -7.27, pFDR < .001; A 
vs. L: t = -11.39, pFDR < .001), and appears to be the case in several other higher-level areas for 
language and narrative comprehension: the language embeddings captured the largest proportion of 
connectivity, followed by the speech embeddings, then the acoustic embeddings. This suggests that 
nearby parcels within a given language region tend to co-fluctuate along a shared set of linguistic 
features. Early auditory areas are most strongly coupled along acoustic and speech features. In 
contrast, parcels within higher-level areas, including language areas and default-mode areas, are 
coupled according to higher-level language features. 

We next examined feature-specific model-based connectivity across different regions of the language 
network (Fig. 3c). We found that the acoustic embedding best captured the connectivity between EAC 
and STG/S regions (A vs. S: t = 7.87, pFDR < .001; S vs. L: t = 1.40, pFDR = 0.179; A vs. L: t = 7.16, pFDR < 
.001). The edges connecting STG/S and IFG, on the other hand, were dominated by the language 
embeddings, with speech embeddings capturing a large but secondary portion of variance (A vs. S: t 
= -17.47, pFDR < .001; S vs. L: t = -10.59, pFDR < .001; A vs. L: t = -19.25, pFDR < .001). We observed a 
similar profile for the edges connecting STG/S and PMC B (A vs. S: t = -4.72, pFDR < .001; S vs. L: t = 
-3.77, pFDR < .001; A vs. L: t = -6.03, pFDR < .001). IFG/S was also coupled with PMC B, but similarly 
along all three sets of features (A vs. S: t = -4.57, pFDR < .001; S vs. L: t = 0.53, pFDR = 0.599; A vs. L: t = 
-1.82, pFDR = .086). The language embeddings captured the most connectivity between default mode 
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areas, such as TPJ and PMC C (A vs. S: t = -4.05, pFDR < .001; S vs. L: t = -7.26, pFDR < .001; A vs. L: t 
= -7.40, pFDR < .001). We also observed negative model connectivity values between the EAC and 
IFG/S, which may be due to systematic differences in the time course of activity between these 
regions. In some cases, for example, between neighboring PMC B and PMC C in DMN, model 
connectivity was negligible, despite markedly stronger ISFC. Overall, these results suggest that edges 
connecting different language areas, including discontiguous and relatively distant cortical regions, are 
coupled along a subset of shared linguistic features. In line with a soft hierarchy, many connections 
appear to be driven by overlapping sets of linguistic features. For example, connectivity among STG/S 
regions is driven by acoustic, speech, and linguistic features (Fig. 3b). Furthermore, there are clear 
trends in which lower-level areas are coupled along acoustic features, and higher-level areas are 
coupled along language (and to a lesser extent, speech) features. 

 

 

Fig. 3. Feature-specific model-based connectivity within and between language regions. (a) We focused on 
eight language-related regions (comprising 207 parcels) that previously showed strong ISC during story listening: 
early auditory cortex (EAC), superior temporal gyrus and sulcus (STG/S), inferior frontal gyrus and sulcus (IFG/S), 
temporoparietal junction angular gyrus and inferior parietal lobule (TPJ AngG and TPJ IPL), and posterior medial 
cortex A, B, and C (PMC A, PMC B, and PMC C). (b) Feature-specific model connectivity values were averaged 
across parcel pairs within each language region. (c) Feature-specific model connectivity values were averaged 
across parcel pairs connecting different language regions. Between-region model connectivity results are shown 
only for region pairs with positive ISFC values. Error bars indicate bootstrap 95% confidence intervals. See Fig. 
S2 for the same results plotted against the ISFC and joint model performance values. 
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To better visualize the cortical extent of feature-specific connectivity between cortical language 
regions, we created seed-based model connectivity maps of EAC, STG/S, and IFG/S. For each seed, 
we computed model connectivity for each feature band across all parcels and identified parcels with 
significant connectivity (using a one-sample t-test across subjects). This analysis revealed overlapping 
maps of model connectivity captured by each of the different feature bands for each seed (Fig. 4). 
Models trained in EAC yielded significant feature-specific model connectivity maps constrained to 
perisylvian areas, with the acoustic embeddings driving the marginally wider-spread connectivity. For 
models trained in STG, connectivity based on acoustic embeddings was tightly localized to the middle 
STG, whereas speech embeddings yielded connectivity extending along the STG/S, and language 
embeddings expanded connectivity in the STG/S and IFG/S. For models trained in IFG/S, only weak 
encoding was found for acoustic embeddings, whereas the speech and language embeddings yielded 
increasingly widespread connectivity in frontotemporal language areas. This suggests that language 
areas are coupled through multiple, overlapping sets of linguistic features. However, higher-level 
linguistic features (speech and language embeddings) are increasingly dominant in linking higher-order 
regions. 

 

Fig. 4. Seed-based feature-specific connectivity maps. Seed-based model connectivity maps were computed 
separately for the three feature bands in three seed regions: early auditory cortex (EAC), superior temporal gyrus 
and sulcus (STG/S), and inferior frontal gyrus and sulcus (IFG/S). For each feature band and seed, we first 
computed the parcel-pair connectivity between parcels within the seed and all parcels with significant encoding 
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based on the joint model (i.e., the same regions as in Fig. 1e). Then, we averaged the resulting connectivity 
values across the seed parcels. 

Transition from acoustic- to language-based connectivity in the temporal cortex  
We next zoomed in on a subset of regions for speech comprehension for which we have clear 
hypotheses about which linguistic features are shared across regions. We hypothesized that EAC 
would be coupled to neighboring STG regions primarily according to acoustic and speech features, 
while in more lateral STG/S regions, acoustic features of connectivity would recede and be overtaken 
by language features. We examined the feature-specific model connectivity between seven smaller 
regions along three pathways extending from the EAC/STG towards the STSva, STSvm, and STSp 
(Fig. 4). 

We found that the model connectivity, calculated by averaging the connectivity values across all edges 
linking a pair of regions, progressed systematically across feature bands as we moved further along 
these pathways. Specifically, model connectivity between EAC and STG was most strongly driven by 
acoustic features, followed closely by speech features, and then language features (A vs. S: t = 6.69, 
pFDR < .001; S vs. L: t = 10.00, pFDR < .001; A vs. L: t = 12.66, pFDR < .001). At the transition from STG to 
STSda and STSdm, acoustic connectivity relatively decreased, and all three feature bands contributed 
more similarly to connectivity, though some comparisons remained significant (A vs. S for STG-STSda: 
t = 4.95, pFDR < .001; S vs. L for STG-STSda: t = -2.87, pFDR = .007; A vs. L for STG-STSda: t = 1.63, 
pFDR = 0.119; A vs. S for STG-STSdm: t = 1.49, pFDR = 0.143; S vs. L for STG-STSdm: t = -5.13, pFDR < 
.001; A vs. L for STG-STSdm: t = -3.32, pFDR = .002). Finally, as we moved from STSda and STSdm to 
STSva and STSvm, the pattern fully reversed, such that the language features captured the largest 
portion of connectivity, followed by the speech embeddings, then the acoustic embeddings (A vs. S 
for STSda-STSva: t = -9.10, pFDR < .001; S vs. L for STSda-STSva: t = -5.15, pFDR < .001; A vs. L for 
STSda-STSva: t = -9.79, pFDR < .001; A vs. S for STSdm-STSvm: t = -14.40, pFDR < .001; S vs. L for 
STSdm-STSvm: t = -12.63, pFDR < .001; A vs. L for STSdm-STSvm: t = -19.41, pFDR < .001). These 
findings demonstrate a clear transition in the subspace of linguistic features linking EAC to increasingly 
lateral language areas in STG/S from predominantly acoustic to predominantly higher-level language 
features. In all cases, however, the model-based connectivity did not fully capture stimulus-driven 
connectivity quantified using ISFC (Fig. S3). 
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Fig. 5. Model connectivity along superior temporal pathways. Feature-specific model connectivity was 
computed across parcel pairs along pathways linking early auditory cortex (EAC), superior temporal gyrus (STG), 
and superior temporal sulcus (STS) spanning the following regions: EAC, STG, dorsal anterior, ventral anterior, 
dorsal mid, ventral mid, and posterior superior temporal sulcus (STSda, STSva, STSdm, STSvm, STSp). Model 
connectivity showed progressive transition across feature bands as we moved further along these pathways: 
EAC-STG connectivity was most strongly driven by acoustic features, followed by speech features, and then 
language features; connectivity of STG to STSda and STSdm relatively decreased for the acoustic feature band, 
and all three feature bands contributed more similarly; and the pattern of connectivity from STSda to STSva and 
STSdm to STSvm was reversed, where language features captured the largest portion of connectivity, followed 
by the speech embeddings, then the acoustic embeddings. Error bars indicate bootstrap 95% confidence 
intervals. 

Model-based connectivity recapitulates large-scale cortical network configuration 
To assess how well model connectivity captures larger-scale patterns of connectivity, we 
systematically examined the correlation between the connectivity patterns from feature-specific model 
connectivity matrices and the corresponding connectivity patterns quantified using ISFC (Fig. 5). This 
analysis was performed at three spatial scales. First, when considering the whole language network, 
we found that the language embeddings better captured the ISFCs, followed by speech embeddings, 
then acoustic embeddings (A vs. S: t = -10.16, pFDR < .001; S vs. L: t = -6.78, pFDR < .001; A vs. L: t = 
-12.19, pFDR < .001) (Fig. 5a). As a control, we examined the correlation between model connectivity 
patterns and ISFC for all parcel pairs across the rest of the cortex (excluding language areas), which 
resulted in much lower correlations (A in language network vs. rest of brain: t = 27.32, pFDR < .001; S in 
language network vs. rest of brain: t = 31.47, pFDR < .001; L in language network vs. rest of brain: t = 
35.62, pFDR < .001). 

Second, we examined the correlation between model connectivity and ISFC for the connectivity 
profiles of EAC, language (STG/S and IFG/S), and default-mode (TPJ and PMC) regions to all language 
network regions (Fig. 5b). Model connectivity for the auditory features was most similar to the ISFC 
profile for EAC (A vs. S for EAC regions: t = 2.00, pFDR = .054; S vs. L for EAC regions: t = 4.44, pFDR < 
.001; A vs. L for EAC regions: t = 6.21, pFDR < .001), whereas model connectivity for language features 
was most similar to ISFC for language and default-mode profiles (A vs. S for language regions: t = 
-10.89, pFDR < .001; S vs. L for language regions: t = -6.96, pFDR < .001; A vs. L for language regions: t 
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= -13.69, pFDR < .001; A vs. S for default-mode regions: t = -10.64, pFDR < .001; S vs. L for 
default-mode regions: t = -7.95, pFDR < .001; A vs. L for default-mode regions: t = -12.74, pFDR < .001). 

Third, we focused on connectivity patterns between the three groups of regions involved in spoken 
narrative comprehension (Fig. 5c). The acoustic and speech features best recapitulated ISFC 
connectivity between EAC and downstream frontotemporal language areas (A vs. S: t = 2.45, pFDR = 
.020; S vs. L: t = 7.62, pFDR < .001; A vs. L: t = 8.82, pFDR < .001), whereas the language features 
(followed by the speech features) best recapitulated ISFCs between language and default-mode areas 
(A vs. S: t = -13.30, pFDR < .001; S vs. L: t = -7.48, pFDR < .001; A vs. L: t = -14.71, pFDR < .001). 
Interestingly, the correspondence between model connectivity and ISFC was fairly similar for acoustic 
and language features, with speech features slightly (but significantly) outperforming the other features 
for the connections between EAC and default-mode areas (A vs. S: t = -4.86, pFDR < .001; S vs. L: t = 
3.11, pFDR = .004; A vs. L: t = -1.03, pFDR = 0.311). These regions may be weakly coupled, or they may 
be indirectly coupled through the intermediate language areas. 

 

 

Fig. 6. The feature-specific model connectivity recapitulates the intersubject functional connectivity 
network configuration. The similarity between model connectivity and intersubject functional connectivity 
(ISFC) was quantified as the correlation between vectorized model connectivity and ISFC (sub)matrices. The 
highlighted (purple) parts in the schematic parcel-by-parcel connectivity matrices at the bottom indicate the 
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edges contributing to each group of bars. (a) Similarity between patterns of feature-specific model connectivity 
and ISFC was computed within the language network level for acoustic, speech, and language embeddings. As 
a control, similarity between model connectivity and ISFC was computed within the rest of the cortex. (b) 
Similarity between model connectivity and ISFC was computed for three broad groups of regions associated 
with spoken narrative comprehension across their respective connectivity profiles: early auditory cortex (EAC), 
language (i.e., superior temporal gyrus and sulcus [STG/S] and inferior frontal gyrus and sulcus [IFG/S], and 
default-mode (i.e., TPJ and posterior medial cortex [PMC]) regions. (c) Finally, we examined the similarity of 
model connectivity and ISFC between groups of low-, mid, and high-level regions associated with spoken 
narrative comprehension. Error bars indicate bootstrap 95% confidence intervals. 

 

Discussion 

This study provides evidence that cortical language regions are coupled through distinct and 
overlapping subspaces of linguistic features. By using a model-based functional connectivity 
framework, we demonstrated that acoustic, speech, and language embeddings derived from a unified 
speech and language model can predict connectivity between regions. Our findings revealed that 
different subsets of linguistic features capture distinct aspects of overall network connectivity. 
Acoustic features, and to a lesser extent speech features, drive connectivity between early auditory 
and intermediate language areas. In contrast, language features, and secondarily speech features, 
drive connectivity between language areas and higher-level default-mode areas. When examining 
more anatomically specific connectivity in superior temporal cortex, we observed a systematic 
transition from acoustic to language features linking neighboring temporal regions, corresponding to a 
processing hierarchy progressing from perceptual to more abstract features of spoken language. 
Overall, these results reveal a soft processing hierarchy: regions of the language network are coupled 
via a mixture of acoustic, speech, and language features, but increasingly abstract linguistic features 
drive connectivity among higher-order cortical regions. 

Over the last two decades, ISC analysis (Hasson et al., 2004; Nastase et al., 2019) has advanced the 
field of neuroimaging by enabling researchers to map stimulus-driven neural responses to naturalistic 
stimuli, like spoken language, even in the absence of an explicit model of such complex stimuli (e.g., 
Stephens et al., 2010; Lerner et al., 2011). In recent years, both methodological and computational 
advances have enabled the testing of more meaningful, neuroscientifically relevant feature 
representations of complex naturalistic stimuli at scale (Nastase et al., 2020a), particularly in the 
language domain. First, voxelwise encoding models provide a powerful framework for isolating 
feature-specific components of stimulus-driven brain activity in naturalistic paradigms (Wu et al., 2006; 
Naselaris et al., 2011; Wehbe et al., 2014; Huth et al., 2016, Dupré la Tour, Visconti di Oleggio Castello 
et al., 2025). Second, with recent advances in deep learning (e.g., Brown et al., 2020; Radford et al., 
2023), we now have explicit, computational models that can accommodate the richness of real-world 
speech and language. Combining these advances provides a qualitative leap beyond model-free, 
data-driven methods like ISC, allowing researchers to test explicit models of the neural activity 
supporting speech, language, and communication in completely natural contexts (Schrimpf et al., 
2021; Caucheteux et al., 2022; Goldstein et al., 2022, 2025; Tuckute et al., 2024; Zada et al., 2024). 
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While ISC captures stimulus-driven neural activity within a given brain region, ISFC provides a 
theoretical extension that enables us to quantify stimulus-driven functional connectivity between 
regions (Simony et al., 2016). Following the same logic, we evaluated our encoding models across 
regions to identify feature-specific functional connectivity (Toneva et al., 2022). This model-based 
connectivity framework allowed us to quantify which features of speech and language drive the 
co-fluctuations in neural activity between regions of the language network. In the current work, we 
used both ISC and ISFC to quantify the upper limit of reliable, time-locked, stimulus-driven variability 
in the connectivity between regions (or activity within regions; i.e., a “noise ceiling”), then use encoding 
models to quantify how much of this stimulus-driven connectivity can be captured by specific features 
from a neural network model for speech. This approach is conceptually similar to the model 
connectivity method introduced by Meschke et al. (2023), which quantifies the similarity of encoding 
model weights across brain regions. 

Our findings suggest that different areas of the language network are coupled to one another via a 
multidimensional space of shared linguistic features. This geometric notion of functional connectivity is 
conceptually similar to the “communication subspace” observed in visual areas by Semedo and 
colleagues (2019), where one population of neurons is coupled to another population through 
moment-to-moment co-fluctuations along a subset of dimensions in the overall activity space (Kohn et 
al., 2020; MacDowell et al., 2025). Geometric computations of this kind may also underlie both motor 
control and more abstract cognitive control (Vyas et al., 2020; Panichello & Buschman, 2021; 
Churchland & Shenoy, 2024); for example, preparatory motor activity can be maintained in an 
output-null subspace of the overall activity space to avoid prematurely triggering a motor output, then 
rotated into the output-potent subspace to initiate the action (Kaufman et al., 2014); similar 
population-level dynamics have been observed in working memory and attention tasks (Panichello & 
Buschman, 2021). 

Closely related ideas have begun to emerge from efforts to understand information processing in large 
language models. The layers of a large language model are coupled to one another via a 
high-dimensional embedding space—the residual stream (Elhage et al., 2021). The attention heads 
(i.e., a circuit that allows the model to integrate information across words) within each layer process 
language by effectively reading and writing into subspaces of the residual stream. For example, an 
attention head in one layer can effectively communicate contextual information to an attention head in 
a downstream layer by modifying a subset of features in the current activity vector. In LLMs, this 
high-capacity residual stream is critical for encoding the rich contextual inflections of natural language; 
it allows the model to populate information from prior words into the current activity pattern 
(Desbordes et al., 2023; Muller et al., 2024). The individual “regions” of the model (i.e., the attention 
heads) make relatively small token-by-token adjustments to the overall activity of the shared residual 
stream. Different structures of language—such phonemic, syntactic, and semantic structures—are 
fused into a unified embedding space, and refined layer by layer. Integrating the contributions of 
different regions into a shared feature space may provide a computational explanation for why brain 
regions of the language network appear to have very similar functional tuning (Fedorenko et al., 2024). 

We encountered several challenges in pursuing the core questions of this work. First, we observed 
negative ISFC and model connectivity between certain pairs of regions, such as the connections 
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between the EAC and DMN regions (TPJ and PMC), and the connections from TPJ to STG/S and 
IFG/S. For the sake of interpretational simplicity, this manuscript focuses on modeling pairs of regions 
with positive ISFC. We also encountered some surprising cases where the model connectivity 
diverged from the ISFC. For example, EAC and IFG/S were positively correlated in the ISFC matrix, but 
we found negative model connectivity across all three feature bands. Some of these observations 
could be attributed to lags in information processing between regions (Chang et al., 2022), the flexible 
timing incorporated into the fitting of the encoding models (Huth et al., 2016), and/or task-positive and 
task-negative network dynamics (Fox et al., 2005). Future work could pursue more detailed analyses of 
temporal interactions between regions, shedding further light on these observations. Finally, we 
resorted to relatively coarse parcel-level encoding models to reduce the computational burden and 
facilitate model evaluation across subjects. This choice is in tension with a body of work 
demonstrating that both the functional topography and functional tuning of language regions are quite 
variable across individual brains (Fedorenko et al., 2010; Huth et al., 2016; Mahowald & Fedorenko, 
2016; Braga et al., 2020). Future work could use hyperalignment methods to obtain a finer-grained 
correspondence across individuals (Haxby et al., 2011, 2020; Van Uden, Nastase et al., 2018; Nastase 
et al., 2020b; Bhattacharjee et al., 2025). 

Finally, throughout our results, we observed a gap between feature-specific model connectivity and 
the full stimulus-driven connectivity quantified using ISFC, even when combining acoustic, speech, 
and language features (Figs. S2, S3). This raises a question: what stimulus features are driving reliable 
connectivity during story listening that are not yet captured by our models? This gap could be partially 
due to the quality of the linguistic embeddings used to predict brain activity and connectivity. 
Embeddings from more advanced, and ideally more brain-like, language models may improve 
encoding performance and reduce the gap. The current pattern of results reveals one possible path 
forward. While the current selection of linguistic features captures a sizable proportion of ISFC in 
frontotemporal language areas, the gap is most pronounced in connections to higher-level 
default-mode areas (Fig. S3c). This suggests that current language models do not fully capture the 
transformation from linguistic representations to the more abstract narrative- or event-level 
representations thought to be encoded in the DMN (Baldassano et al., 2017; Chen et al., 2017; 
Yeshurun et al., 2021). As more human-like models emerge, our model-based connectivity framework 
provides a means to evaluate these models and reduce the gap. 

 

Methods 

fMRI data. This study used story-listening fMRI data from the openly available Narratives collection 
(Nastase et al., 2021). We used two story datasets acquired from the same 46 participants (32 
females, mean age 23.33 ± 7.55). The two story stimuli are “I Knew You Were Black” (534 TRs) and 
“The Man Who Forgot Ray Bradbury” (558 TRs). Both stories were recorded in front of live audiences 
with occasional laughter, applause, and other audience reactions. “I Knew You Were Black” is an 
autobiographical account written and narrated by Carol Daniel which explores the intersection 
between her job on the radio and her identity as a Black woman. “The Man Who Forgot Ray Bradbury”, 
written and narrated by Neil Gaiman, is a story that explores themes of memory, forgetfulness, and 
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language at individual and collective levels. Functional data were acquired on a 3T Siemens Magnetom 
Prisma with a 1.5 s TR and 2.5 mm isotropic voxels. Refer to the data descriptor for more acquisition 
details (Nastase et al., 2021). 

fMRI preprocessing. fMRI data were minimally preprocessed using fMRIPrep v20.0.5 (Esteban et al., 
2019) including realignment, susceptibility distortion correction, spatial normalization, and resampling 
to the fsaverage6 surface template (Fischl et al., 1999), as described in the data descriptor (Nastase et 
al., 2021). Confound regression was performed with the following nuisance variables: six head motion 
parameters, five principal components from both white matter and cerebrospinal fluid masks 
(aCompCor; Behzadi et al., 2007), cosine detrending variables, and two stimulus confounds tracking 
the number of words per TR, and whether a TR has words or silence. To reduce computational 
demands and facilitate intersubject analyses, vertex-wise time series were averaged within 1,000 
parcels covering the entire cortex based on the functional atlas derived from resting-state functional 
connectivity (Schaefer et al., 2018). 

Regions of interest. Across both hemispheres, 280 parcels were assigned to 46 language-related 
regions of interest (ROIs) consisting of 23 homotopic pairs (Fig. 2g), defined based on four methods: 
functionally defined language regions (Fedorenko et al., 2010), language localizer tasks (Lipkin et al., 
2022), the NeuroSynth activation map for “language” (Yarkoni et al., 2011), and intersubject 
correlations from 345 subjects listening to spoken stories (Nastase et al., 2021). These ROIs were 
selected to capture as comprehensively as possible the full cortical hierarchy for spoken language, 
including early auditory cortex (EAC), all core language ROIs, default-mode areas associated with 
event representation and narrative comprehension, as well as speech articulation areas. The procedure 
for defining these regions is described in detail by Zada and colleagues (2025). The 46 ROIs consisted 
of left and right pairs for the following regions: EAC, superior temporal gyrus (STG), dorsal anterior, 
ventral anterior, dorsal mid, ventral mid, and posterior superior temporal sulcus (STSda, STSva, 
STSdm, STSvm, STSp), inferior frontal gyrus (IFG), orbital inferior frontal gyrus (IFG orb), inferior frontal 
sulcus (IFS), opercular inferior frontal gyrus (IFG oper), middle frontal gyrus (MFG), superior frontal 
language area (SFL), supramarginal gyrus (SMG), temporoparietal junction angular gyrus and inferior 
parietal lobule (TPJ AngG, TPJ IPL), control C (Cont C), posterior medial cortex A, B and C (PMC A, 
PMC B, PMC C), parahippocampal cortex (PHC), dorsomedial prefrontal cortex (dmPFC), and 
sensorimotor cortex (SM). To more easily summarize our results, we also grouped 15 of these ROIs to 
define the following five broad, anatomically-contiguous language-related regions: EAC, superior 
temporal gyrus and sulcus (STG/S: STG, STSda, STSva, STSdm, STSvm, STSp), inferior frontal gyrus 
and sulcus (IFG/S: IFG, IFG orb, IFS, IFG oper), temporoparietal junction (TPJ: TPJ AngG, TPJ IPL), 
and posterior medial cortex (PMC: PMC A, PMC B, PMC C). 

Intersubject correlation and connectivity. Intersubject correlation (ISC) was computed by correlating 
parcel time series in each subject with the average time series across all other subjects for the 
corresponding parcel (i.e., leave-one-out ISC; Nastase et al., 2019). Intersubject functional connectivity 
(ISFC) was computed for each subject and story separately as the pairwise correlations of the 
subject’s parcel time series and the average parcel time series of all other subjects across all pairs of 
parcels. ISFC matrices were symmetrized by averaging the upper and lower off-diagonal triangles of 
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each ISFC matrix. ISFC matrices were then averaged across the two stories. The diagonal of the ISFC 
matrix corresponds to the within-parcel ISC values. 

Following the logic of ISC, ISFC captures stimulus-driven connectivity, because the stimulus is the 
only source of variance that is time-locked across subjects. Whereas traditional within-subject 
functional connectivity (WSFC) can be driven by intrinsic fluctuations with idiosyncratic, 
subject-specific timing, ISFC isolates the stimulus-driven component of connectivity (Simony et al., 
2016; Simony & Chang, 2020). That said, data-driven methods like ISC, ISFC, and WSFC do not tell us 
what stimulus features are driving activity and/or connectivity; for example, ISC in early auditory areas 
may be driven by low-level acoustic features, whereas ISC in lateral temporal language areas may be 
driven by higher-level linguistic features. To more precisely quantify what is driving the connectivity 
between regions, we need to test explicit models of different stimulus features. 

Stimulus feature extraction. For the two spoken story stimuli, we extracted three types of word-level 
embeddings from Whisper (“openai/whisper-medium.en” from the HuggingFace library), a multimodal, 
transformer-based speech-to-text large language model (Radford et al., 2023). Whisper is a deep 
neural network using a full transformer architecture composed of separate encoder and decoder 
stacks. The encoder stack takes as input the speech waveform in a spectrogram format. The decoder 
stack takes as input text tokens corresponding to the words (or sub-words) in the audio transcript. For 
every word in the story, we extracted (up to) a 30-second audio segment preceding the current up until 
after the current word is articulated. At the same time, we extracted the words uttered in the 
30-second segment from the transcript—again, ending in the current word. Then, we extracted the 
spectrogram from the audio, and split words into tokens. We fed this input to both the encoder and 
decoder in a full forward pass through the model. From the network’s activations we collected three 
embeddings for each word: 1) an “acoustic” embedding from the activations just prior to the first 
transformer layer of the encoder stack; 2) a “speech” embedding from the activations after the last 
layer of the encoder stack; and 3) a contextual “language” embedding from the activations of the 20th 
layer of the decoder stack (out of 24 layers). We use the term “acoustic” to denote that these 
activations are closest to the audio input; we use the term “speech” embeddings because it is the final 
representation of the audio—and the one that is referenced by each layer of the decoder; and we use 
the term “language” for the contextual word embeddings from the decoder stack because this are 
most similar to the embeddings extracted from typical text-based large language models (Goldstein et 
al., 2025). All three types of embeddings are 1,024-dimensional vectors. Timing information from the 
transcripts (i.e., word onsets and offsets) were used to average word-level embeddings within each 
corresponding fMRI TR for use in the encoding models. 

Intersubject encoding models. We used encoding models to quantify to what extent different 
linguistic features are encoded in the activity of a given brain region. The two stories were used 
alternately for training and testing encoding models. Banded ridge regression was used to estimate 
parcel-wise encoding models in the train story using all three sets of embeddings (i.e., feature spaces) 
jointly in three separate “bands” to allow these features to fairly compete for variance in the brain 
activity. Each feature band was assigned its own regularization parameter based on random search 
across 20 log-spaced parameters in the range [1, 1019], using five-fold nested cross-validation within 
each training story. All encoding models were trained at the level of parcel time series. Encoding 
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models of this kind quantify the average feature tuning of neural populations within each parcel. 
Model-predicted BOLD activity was generated for the test story based on the joint model weights, as 
well as for the weights at each of the three feature bands separately. Encoding models were trained 
within each subject, but were evaluated by correlating the model-based predictions with the actual 
activity at a given parcel averaged across the remaining subjects, to more closely match the 
formulation of the ISC analysis. In this way, all encoding models were forced to generalize both across 
stories and across subjects. 

Intersubject model-based connectivity. We then evaluated the encoding models fit within each 
parcel (from the preceding section) across parcels, following the logic of ISFC: the subject’s 
model-predicted time series was correlated with the average actual time series of all other subjects 
across all pairs of parcels. We refer to this analysis as intersubject model-based functional connectivity 
(see Toneva et al., 2022, and Meschke et al., 2023, for related ideas). We computed a separate 
model-based connectivity matrix for each feature-band, as well as for the joint model. Model-based 
connectivity matrices were symmetrized in the same way as ISFC. When summarizing our results, we 
always average model-based connectivity values (correlations) among pairs of parcels, instead of 
averaging predicted or actual time series across parcels. ISFC conceptually serves as a noise ceiling 
for stimulus-driven connectivity that is reliable across subjects. In implementation, however, given that 
encoding models are more flexible in accounting for hemodynamic lags, model-based connectivity 
may numerically diverge from ISFC values. 

In summarizing model connectivity results, we focused on eight language-related regions comprising 
207 parcels that have been shown to exhibit strong ISC during story listening: EAC, STG/S, IFG/S, TPJ 
AngG, TPJ IPL, PMC A, PMC B, and PMC C. Within-region (model) connectivity was summarized for a 
given region by averaging the correlation values between all pairs of parcels within that region 
separately for each subject and feature band. Between-region (model) connectivity between a given 
pair of regions was summarized by averaging the correlation values between all pairs of parcels 
connecting the two regions. For visualization and interpretational simplicity, we opted not to evaluate 
model performance across regions (i.e., model connectivity) for pairs of regions with negative ISFC 
values. 

Statistical testing. We assessed the statistical significance of whole-brain ISC and encoding model 
performance at each parcel using a one-sample t-test across subjects (Fig. 1). The false discovery rate 
(FDR) was controlled at p < .05 across 1,000 parcels. To determine whether model-based connectivity 
values differed significantly from one another, we performed paired t-tests (df = 45) between the model 
performance values for different feature bands. FDR was controlled at p < .05 among the comparisons 
under consideration. For visualization, we generated error bars by bootstrapping subject-level values 
(i.e., resampling subjects with replacement) 1,000 times for each mean value. 

Data, Materials, and Software Availability. The fMRI data used here are openly available as part of 
the Narratives collection (Nastase et al., 2021): https://doi.org/10.18112/openneuro.ds002345.v1.1.4; 
https://datasets.datalad.org/?dir=/labs/hasson/narratives; 
https://fcon_1000.projects.nitrc.org/indi/retro/Narratives.html. The code used to perform the core 
analyses of this study is available at https://github.com/zaidzada/narrative-enc. 
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Fig. S1. Schematic workflow and encoding model evaluation. fMRI data were collected from 46 subjects 
while they listened to two spoken narratives: each story served as the train story and test story. The transcript 
and audio spectrograms of the train and test stories were fed into a large language model (Whisper) to extract 
distinct word-level embedding representations of the story as follows: acoustic embeddings were extracted from 
the input to the first transformer layer of the encoder stack; speech embeddings were extracted from the last 
encoder stack; and language embeddings were extracted layer 20 of the decoder stack. The train story 
embeddings were then used in combination with train story parcel-resolution fMRI time series data to estimate 
parcel-wise encoding models using banded ridge regression. Model-based predictions of parcel time series were 
generated based on the weights associated with each of the three feature bands, as well as the joint model 
weights. In parallel, intersubject function connectivity (ISFC) was computed as the pairwise correlation of a given 
subject’s time series and the group-averaged time series of all other subjects for all pairs of brain parcels. 
Model-based connectivity was also computed following the logic of ISFC by correlating the subject’s predicted 
time series and the group-average actual time series of all other subjects for all pairs of parcels. 

 

32 

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted June 3, 2025. ; https://doi.org/10.1101/2025.06.02.657491doi: bioRxiv preprint 

https://doi.org/10.1101/2025.06.02.657491
http://creativecommons.org/licenses/by-nc/4.0/


 

Fig. S2. Model-based connectivity within and between language regions in reference to intersubject 
functional connectivity, related to Fig. 3. (a) Focusing on the same eight language-related regions (early 
auditory cortex [EAC], superior temporal gyrus and sulcus, [STG/S], inferior frontal gyrus and sulcus [IFG/S], 
temporoparietal junction angular gyrus and inferior parietal lobule [TPJ AngG and TPJ IPL], and posterior medial 
cortex A, B and C [PMC A, PMC B, and PMC C]) from Fig. 3, we reproduced the feature-specific model 
connectivity results with the addition of the joint model connectivity and intersubject functional connectivity 
(ISFC) values for both the within (b) and between (c) language region. Similar to Fig. 3, between-region model 
connectivity results are shown only for region pairs with positive ISFC values. Error bars indicate bootstrap 95% 
confidence intervals. 
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Fig. S3. Model connectivity along superior temporal pathways in reference to intersubject functional 
connectivity, related to Fig. 5. We reproduced model connectivity results across parcel pairs along pathways 
linking early auditory cortex (EAC), superior temporal gyrus (STG), and superior temporal sulcus (STS) with the 
addition of joint model connectivity and intersubject functional connectivity (ISFC) values for reference. Error bars 
indicate bootstrap 95% confidence intervals. 
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