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Significance

 We manipulate the structure of an 
artificial neural network to isolate 
the influence of anatomical 
architecture on the emergence of 
the topological gradient of 
activation pattern propagation 
observed in the human brain. 
Using networks that process 
words sequentially and encode 
their relationships through 
recurrent activities, we found that 
the propagation of external 
information from sensory neurons 
through local connections yields 
an intrinsic lag gradient. Notably, 
even without task-specific training, 
this biologically inspired 
architecture exhibits an enhanced 
lag gradient when processing 
naturalistic narratives, similar to 
human brain dynamics. These 
findings suggest that evolutionary 
pressure might have been the 
drive underlying the development 
of such an architecture.
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Natural language unfolds over multiple nested timescales: Words form sentences, 
sentences form paragraphs, and paragraphs build into full narratives. Correspondingly, 
the brain exhibits a hierarchy of processing timescales, spanning from lower-  to 
higher- order regions. During narrative comprehension, neural activation patterns 
have been shown to propagate along this cortical hierarchy with increasing temporal 
delays (lags). To investigate the mechanisms underlying this lag gradient, we system-
atically manipulate the structure of a recurrent reservoir network. In the biologically 
inspired “Limited- Canal” configuration, word embeddings are received by a limited 
set of sensory neurons and transmitted through a series of local connections to the 
distal end of the network. This configuration endows the network with an intrinsic lag 
gradient, inducing a cascade of activity as information propagates along the network. 
We found that, similar to the human brain, this intrinsic lag gradient is enhanced by 
naturalistic narratives. The interaction between naturalistic input and network struc-
ture becomes evident when manipulating local connectivity through the “canal width” 
parameter, which determines how closely the Limited- Canal model mirrors the human 
brain’s sensitivity to narrative structure. In addition, we found that processing cost, as 
a computational proxy for the BOLD signal, increases more slowly in later neurons, 
which can account for the emergence of the lag gradient. Our results demonstrate that 
narrative- driven neural dynamics can emerge from macroscale anatomical topology 
alone without task- specific training. These fundamental topological properties of 
the human cortex may have evolved to effectively process the hierarchical structures 
ubiquitous in the natural environment.

temporal processing hierarchy | naturalistic narrative | fMRI | recurrent network | reservoir

 Humans are remarkably sensitive to the complex, nested structures of events in the external 
world. A growing line of work using naturalistic narrative stimuli (e.g., spoken stories) 
has revealed a cortical processing hierarchy thought to encode these structures ( 1             – 8 ). The 
structure of natural language is temporally nested over multiple timescales, where pho-
nemes build words, words build sentences, sentences build paragraphs, and paragraphs 
combine to create narratives. Along the temporal processing hierarchy, areas responsible 
for processing speech in the superior temporal gyrus (STG) appear to rapidly integrate 
information over hundreds of milliseconds, which corresponds to the integration of pho-
nemes into words. Adjacent areas along the STG seem to integrate information over 
seconds, which corresponds to the integration of words into phrases and sentences ( 9 ). 
Finally, areas in the default mode network (DMN) at the top of the processing hierarchy 
appear to integrate information over tens of seconds, which corresponds to the integration 
of information across paragraphs ( 10   – 12 ).

 The temporal processing hierarchy was found using different linguistic stimuli and was 
observed while using spoken or written narratives ( 12       – 16 ). Chien and Honey ( 4 ) found a 
gradual flow of information across the cortical hierarchy. In a clever design, they measured 
activity alignment to a given paragraph in two groups of subjects who listened to two different 
preceding stories. The time it took for their neural responses to converge served as an esti-
mation of the integration time constant. The results indicate that sensory cortices with a 
short temporal integration window aligned most quickly across subjects to shared paragraphs, 
followed by mid-level regions with an intermediate temporal integration window. At the top 
of the temporal integration hierarchy, it took more than 10 s to align to information conveyed 
along the paragraph. This corroborates work by Baldassano et al. ( 17 ) demonstrating a hier-
archy of cortical event representations. They observed that narrative stimuli evoke more 
numerous and shorter neural events in sensory cortices, while higher-level areas, such as the 
posterior medial cortex, exhibited fewer and longer events (see also refs.  18  and  19 ).

 Infant studies provide an opportunity to investigate the development of the hierarchi-
cally organized processing timescales. It has been shown that infants exhibit reliable D
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processing timescales during both rest ( 20 ) and cartoon watching 
( 21 ), although these timescales do not exhibit the hierarchical 
organization from sensory to transmodal regions. However, dis-
entangling the contributions of cortical anatomical immaturity 
and limited prior experience remains a challenge when comparing 
infants to adults.

 As a complementary approach, artificial neural networks, 
though lacking certain biological features of the brain, offer a 
means to systematically compare neural computation with varying 
anatomical and functional architectures, features of large-scale 
network organization that cannot be directly manipulated in 
humans. Studies comparing the output of artificial networks with 
human behavior and neural responses have gained increasing 
attention ( 22         – 27 ).

 Artificial neural networks encode linguistic inputs (e.g., words) 
as distributed activity vectors across units, comprising a 
high-dimensional embedding space where geometric relations 
among vectors capture linguistic relationships among words (e.g., 
ref.  28 ). Embeddings extracted from higher network layers seem 
to code semantic and syntactic relationships across longer tem-
poral scales ( 29 ,  30 ). Among the various architectures of artificial 
neural networks, the transformer architecture has come to 
 dominate natural language processing tasks in recent years (e.g., 
refs.  31   – 33 ). Transformers rely on repeated layers of a particular 
circuit motif (the “self-attention head”) that integrates informa-
tion across words in a fixed context window to adjust the meaning 
of each word in context. Recent work has demonstrated that 
transformer-based models learn internal representations that can 
predict brain activity measured during naturalistic narrative com-
prehension with remarkable accuracy ( 26 ,  34       – 38 ). However, 
while humans must process linguistic inputs sequentially ( 39 ), 
transformers simultaneously process an entire input sequence—
up to the length of the context window [for example, 1,024 
tokens in GPT-2 ( 32 ), and tens of thousands of tokens in more 
recent models, e.g., GPT-4].

 On the other hand, recurrent neural networks process one word 
at a time ( 40 ,  41 ). Similarly to humans, recurrent networks can 
encode temporal relationships among words, which makes them 
particularly relevant to human biological language processing ( 38 , 
 42 ). Sequential input in recurrent networks produces waves of 
signals that overlap and evolve in time, which encode the spatial 
and temporal features of the input ( 43 ). Reservoir computing ( 44 ) 
employs recurrent connections (projections from neurons in one 
layer back onto other neurons in the same layer) to generate rich 
dynamics that have powerful computational properties ( 45 ). Local 
recurrent connectivity is a principal feature of the primate cortex 
( 46 ). In the reservoir network, the continuous contextual history 
of past words is maintained in the flow of their trace through the 
recurrent connections. Task-specific training only modifies the 
output weights, not the internal recurrent connections. In other 
words, training affects the extraction of contextual memory but 
not its structure and maintenance in the reservoir model. The 
resulting capabilities for temporal integration and high-dimensional 
representation allow reservoir models to capture relevant proper-
ties of cortical dynamics at the level of a single unit and neuronal 
population activity ( 47 ). Reservoir computing has recently been 
used to examine cognitive function and brain dynamics with archi-
tectures constrained by the human connectome ( 48   – 50 ). While 
artificial neural networks do not capture many of the detailed 
biological features of the brain, reservoir networks capture the 
recurrent dynamics, making them particularly suitable for mod-
eling the neural dynamics within the cortical processing hierarchy 
(relative to, e.g., transformers or other feedforward artificial neural 
network models).

 Indeed, given the sequential nature of human narrative pro-
cessing, such recurrent networks with inherent temporal dynamics 
may provide novel insights into the brain dynamics underlying 
narrative comprehension. In a first effort in this direction ( 51 ), 
we used a recurrent reservoir model to reproduce findings of both 
the increasing narrative time constants ( 4 ) and the hierarchy of 
event representations ( 17 ) in silico. In a classical reservoir model, 
as reported in Chien and Honey ( 4 ), we observed a broad distri-
bution of integration time constants, a measure of how long a 
neuron bin retains the influence of past input or how slowly it 
“forgets,” and, as reported by Baldassano and colleagues ( 17 ), 
neural populations with longer time constants preferred longer 
narrative events. These findings suggest that these two processes 
derive from a common temporal integration mechanism inherent 
in reservoir computing ( 51 ). However, unlike the human brain, 
the classical reservoir structure lacks hierarchical topology, as all 
units receive sensory inputs and are connected to all other units. 
Neurons with different temporal integration constants are scat-
tered across the network [Dominey et al. ( 52 ); reproduced in 
 SI Appendix, Figs. S1 and S2 ].

 Inspired by previous work indicating that biological neural 
networks are optimized for hierarchically structured naturalistic 
inputs ( 10 ,  52 ,  53 ), in this study, we test the hypothesis that 
reservoir networks may capture the key architectural properties of 
large-scale cortical organization and reproduce human brain 
dynamics evoked by naturalistic narratives. We targeted a topo-
graphic gradient of lagged activity across brain networks observed 
during narrative comprehension ( 54 ) ( Fig. 1 ). Namely, similar 
neural response fluctuations appear across distinct functional net-
works with systematic temporal delays. To quantify stimulus-driven, 
interregional temporal lags, we first computed intersubject func-
tional connectivity using a leave-one-subject-out approach. We 
then identified the lag that maximized functional connectivity 
between network pairs. This lag gradient follows the cortical pro-
cessing hierarchy ( 10 ,  12 ), where higher-order areas with longer 
temporal integration windows have relatively longer activity delays 
than areas lower in the hierarchy with shorter temporal integration 
windows. In prior work ( 54 ), We proposed that this gradient 
reflects the recursive construction of increasingly larger linguistic 
or narrative events, where the output at one level (e.g., words) 
becomes the input for the next (e.g., phrases). Supporting this 
interpretation, this lag gradient is diminished when the temporal 
structure of a narrative is disrupted by temporally scrambling the 
narrative stimulus.        

 Our prior simulations demonstrated that nested linguistic struc-
tures are a crucial factor for the emergence of the lag gradient ( 54 ). 
We explicitly simulated the hierarchically structured linguistic/
narrative event boundaries in naturalistic narratives and their tem-
poral integration functions. Simulated neural activity in one pro-
cessing level is passed to the next, with each level integrating 
information over longer timescales and resetting at event bound-
aries. This simple model was sufficient to produce the observed 
lag gradient. In other words, the lag gradient arises from the grad-
ual integration and transmission of linguistic units (words, sen-
tences, paragraphs) along the processing hierarchy.

 In the current research, we examine whether the lag gradient 
can emerge from intrinsic structure in the network and the input, 
without explicitly specified narrative boundaries and response 
functions. To begin quantifying the semantic structure of the nar-
rative texts, we utilized the Wikipedia2Vec model, pretrained on 
the three billion words 2018 Wikipedia corpus, to generate word 
embeddings from the narratives. These embeddings encode the 
semantic meaning of words such that semantically related words 
will have similar embeddings (corresponding to nearby locations D
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in embedding space). The semantic structure of the narratives is 
not fully continuous over time: Narrative boundaries can emerge 
from semantic discontinuities in word-by-word embeddings 
derived from the narrative texts. For example, certain scenes or 
events will be semantically coherent, with high similarity among 
the corresponding word embeddings; at narrative event bounda-
ries, there will tend to be a discontinuity in the similarity of the 
corresponding word embeddings (SI Appendix, Fig. S3 ). These 
discontinuities can occur at varying scales and provide the narra-
tive boundaries that propagate through the network, driving the 
lag gradient. The word embeddings derived from the narrative 
text are supplied as input to the reservoir network.

 Given this structured input, we systematically manipulated two 
structural parameters of the reservoir network: First, we manipu-
lated whether external inputs are restricted to a subset of neurons, 
thus effectively focusing the input-driven activation on a small set 
of “sensory” neurons. Second, we manipulated the relationship 
between the probability that two neurons are connected and their 
topological nearness, such that neurons tend to communicate only 
with their closest neighbors. This connectivity architecture, often 
characterized by an exponential distance rule (EDR)—the prob-
ability of two neurons being connected decreases exponentially 

with the distance between them—is a characteristic of primate 
cortical connections ( 56 ). It has been shown to produce temporal 
processing hierarchies in models of the macaque cortex ( 3 ,  57 ).

 To explore the influence of stimulus input distribution and 
connectivity architecture, we implemented four reservoir network 
models ( Fig. 2 ). The Distributed-Random structure represents a 
classical reservoir model where stimulus inputs are distributed 
across all reservoir neurons, and reservoir neurons have an equal 
random probability of being connected to each other. In contrast, 
the Limited-Random model restricts input to a subset of sensory 
neurons while maintaining random connectivity. The 
Distributed-Canal model introduces a local connectivity rule 
while retaining distributed input. Finally, the Limited-Canal 
model combines both localized connectivity and constrained 
input, forming a structured activation flow that propagates from 
sensory neurons to more distant regions. These models allow us 
to investigate how different architectures influence information 
flow and temporal dynamics in reservoir networks. Among the 
candidate models, the reservoir network with limited input and 
canal-like connectivity architecture ( Figs. 1A   and  2D  ) most closely 
reflects the distribution of sensory neurons and anatomical con-
nectivity in the human brain. We find that, in this model, narrative 

Fig. 1.   Construction of the interregion peak lag matrix. (A) Lag- functional connectivity between seed- target neuron bins in reservoir networks, computed using an 
analysis method previously applied to the human brain (panels B–D, adapted from ref. 54). A network with limited input connectivity and canal- like connectivity (the 
Limited- Canal model) is shown as an example. Neurons are organized into bins, analogous to networks in panel B. (B) Lag- functional intersubject connectivities 
(cross- correlation) between seed- target brain networks were computed using the leave- one- subject- out method. Computing connectivity across subjects isolates 
stimulus- driven connectivity. The dorsal language (dLAN) network is used as an example seed network for illustrative purposes. AUD = auditory; vLAN = ventral 
language; ATT = attention; DMN = default mode network. (C) The matrix depicts intersubject functional connectivity between the dLAN seed and all six target 
networks at varying lags. The lag with the peak correlation value (colored vertical bars) was extracted and color- coded according to lag. For visualization, the 
lag- functional connectivities were z- scored across lags. (D) The network × network peak lag matrix (P < 0.05, false discovery rate (FDR) corrected) (55). Zeros along 
the diagonal indicate that intranetwork connectivity peaks at lag 0. Warm colors represent peak lags following the seed network, while cool colors represent 
peak lags preceding the seed network. An example story (“Sherlock”) is shown for illustrative purposes.
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inputs reveal increasing temporal integration time constants along 
topographically organized neurons as found in humans ( 52 ).        

 To investigate the interaction between network structure and 
input structure, we included both intact natural narratives and 
scrambled versions of these narratives. The word-scrambled ver-
sions were created by shuffling the words, thereby eliminating 
relationships between words while keeping the individual words 
intact. The embedding-scrambled versions were created by shuf-
fling the embeddings within each word, which, in addition to 
disrupting the relationships between words, further eliminates 
lexical semantics. The least structured embedding-scrambled ver-
sions serve as probes of the inherent properties of the reser-
voir models.

 As predicted, the Limited-Canal setting endows the reservoir 
network with intrinsic lag properties ( Fig. 3 ). More importantly, 
we found that the narrative structure enhances these inherent lag 
properties ( Fig. 4 ). This sensitivity to input structure can be 
adjusted through the canal “width” parameter ( Fig. 5 ), which reg-
ulates the maximum connection lengths. Namely, the same 
Limited-Canal architecture can be optimized to encode the hier-
archical structure of naturalistic inputs. Finally, we show that 
processing cost, as a computational proxy for BOLD signals, 
builds up slower after event onset in higher-level regions ( Fig. 6 ), 
which can account for the emergence of the lag gradient.                                 

Results

 We examined the dynamics of narrative-driven functional con-
nectivity in reservoir networks varying along two structural param-
eters: 1) sensory inputs are either distributed across all neurons 
(see  Fig. 2 A  and C  , dashed input line) or limited to a subset of 
neurons (300 out of 1,000 neurons; see  Fig. 2 B  and D   dashed 
input line); and 2) neurons are randomly uniformly connected to 
other neurons ( Fig. 2 A  and B  ) or neurons are connected to neigh-
boring neurons in a canal-like EDR fashion ( Fig. 2 C  and D  ). The 
consecutive neurons were binned into six virtual regions of 166 
to 167 neurons, as illustrated in  Fig. 2 , for the models with limited 
sensory neurons (the Limited models, with inputs to neurons 1 
to 300), only the two early regions receive sensory input directly. 
Furthermore, for the models created by the EDR (the Canal mod-
els), similar to the human brain, high-level regions receive 

Fig. 2.   Reservoir network with different structures. Narrative text is input to a language model (LM) which produces word embedding vectors that are input 
to the reservoir to simulate narrative processing. (A) Distributed- Random model (classic reservoir structure): Input is spread across all reservoir neurons, with 
random, uniform connectivity. (B) Limited- Random model: input is restricted to a subset of sensory neurons, while connectivity remains random. (C) Distributed- 
Canal model: Input is distributed, but connectivity follows a local rule. (D) Limited- Canal model: Both input and connectivity are constrained, resulting in a 
canal- like activation flow from sensory neurons to more distant areas. B1- B6 indicates six bins of consecutive neurons that make up the virtual brain regions 
for investigating the lag gradient. Adapted from ref. 52.

Fig. 3.   The intrinsic lag gradient between neuron bins in reservoir networks 
of varying structure. We constructed reservoir networks with distributed or 
limited sensory neurons and random or canal- like connectivity structures. 
These models were then supplied with a sequence of scrambled embeddings 
from a naturalistic narrative (the Sherlock story in this example). Scrambled 
inputs were used to isolate the lag gradient induced by the intrinsic network 
architecture (as opposed to structure in the stimulus). We computed the 
input- driven functional connectivity between bins of neurons in the network 
across varying lags to quantify the lag gradient (P < 0.01, FDR correction).  
The Limited- Canal model replicates the lag gradient found in the human  
brain (54), reflecting the flow of information from early to later groups of 
neurons.
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input-driven signals indirectly across a series of local connections 
( Fig. 2 ).

 To investigate the interaction between network structure and 
input structure, we include intact, word-scrambled, and 
embedding-scrambled versions of the same narrative (SI Appendix, 
Fig. S3 ). Intact natural narratives are the most structured, and the 
embedding-scrambled version the least. To compare our findings 
with human results, we adopted the same naturalistic narratives 
and methods for estimating interregion lags as used in the original 
functional magnetic resonance imaging (fMRI) study ( 54 ).

 While both strong positive and negative outputs from reservoir 
neurons indicate active engagement in the computation, when 
calculating the averaged signals within a neuron bin, positive and 
negative outputs from different neurons may cancel each other 
out, resulting in a flattened signal (SI Appendix, Fig. S4 , Upper ). 
To better approximate BOLD signal, which reflects hemodynamic 
changes driven by the metabolic demand of active neurons, fol-
lowing Hinaut and Dominey ( 58 ), we compute the absolute value 
of the change in activity between consecutive time steps for each 
neuron in the reservoir (SI Appendix, Fig. S4 , Lower ). This metric 
captures input-driven updates across neurons within a bin.

 We measure functional connectivity between the six virtual 
regions by computing the Pearson correlation between their 

processing costs at varying lags ( Fig. 1A  ). Interregion lags are esti-
mated by extracting the lag, showing the maximal correlation value 
within the window of lags from −50 to +50 time steps (=50 words). 

Intrinsic Lag Properties across Varying Reservoir Structures. We 
manipulated the distribution of sensory neurons (Distributed vs. 
Limited) and the reservoir network’s architecture (Random vs. 
Canal). To examine the inherent lag properties of these models, 
we feed them with embedding- scrambled narratives, which are less 
structured than word- scrambled and intact narratives.

 As predicted, we observed a gradient of lags in functional con-
nectivity along bins of neurons—analogous to cortical areas—in 
the Limited-Canal model ( Fig. 3 ). In this model, the external 
signals enter the network through a subset of sensory neurons 
and propagate progressively from early neurons to later neurons, 
like a canal with pebbles that can only drop at one end of it, 
causing waves to propagate over space and time toward the other 
end ( Fig. 3B  ). This Limited-Canal model has topographically 
organized temporal integration constants and event representa-
tions of increasing durations ( 52 ) reproduced in SI Appendix, 
Figs. S1 and S2 , supporting the claim by Chang et al. ( 54 ) that 
the narrative-driven lag gradient reflects the flow of information 
along the cortical hierarchy of processing timescales.

Fig. 4.   Lag gradient in the Limited- Canal model is enhanced by narrative structure. We supplied embedding- scrambled, word- scrambled, and intact versions 
of eight naturalistic narratives from ref. 54 to the Limited- Canal reservoir and computed lagged functional connectivity. (A) Embedding- scrambled stories reveal 
the intrinsic lag properties of the Limited- Canal model. (B) A slightly stronger lag gradient was observed with the word- scrambled inputs. (C) Intact narratives 
induced the strongest lag gradient, in keeping with human results (54) (P < 0.01, FDR correction). (D) The scatter plot depicts the correlation between lag gradients 
in the human brain and the Limited- Canal model (*P < 0.05). Red dots indicate entries with significant lags in both reservoir and human peak lag matrices, while 
dark circles represent the remaining entries.
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 On the other hand, the Limited-Random model shows a lag of 
only one time-step (i.e., one word) between bins 1 and 2 and the 
other bins. In this model, the one-word lag reflects the temporal 
lag between direct external input and the indirect impact of exter-
nal input in neurons connected to the sensory neurons. The 
Distributed-Random and Distributed-Canal models do not show 
any lags between neuron bins. With distributed sensory neurons, 
the shared external input synchronizes different neuron bins and 
eliminates any activation lags between them. This also explains 
the synchronization between bin 1 and bin 2 in models with 
limited sensory neurons since only these two bins receive external 
inputs. Similarly, when dividing the 1,000 neurons into 20 (rather 
than six) bins, the first six bins, consisting of the first 300 neurons, 
are synchronized (SI Appendix, Fig. S5 ), due to the shared exter-
nal inputs.

 When fed with an intact narrative, the Limited-Canal model 
exhibits a stronger lag gradient, whereas the other models yield 
identical results with the embedding-scrambled narratives 
(SI Appendix, Fig. S6 ).  

Narrative Structure Enhances the Intrinsic Lag Gradient. To 
better compare our results with findings in the human brain, we 
expanded our analysis to the same eight naturalistic narratives used 
by Chang et al. (54) to the Limited- Canal model. As shown in 
Fig. 4 C and D, we successfully replicated the lag gradient for the 

intact stories. Chang et al. (54) reported lags ranging from 0 to 9 s 
in human brain activity measured using fMRI. The Limited- Canal 
reservoir exhibits interarea lags ranging from 0 to 37 time- steps, 
approximately corresponding to 0 to 10 s (the reservoir receives 
one word per time step, and the mean word duration in Sherlock 
is 0.277 s; 37 time- steps × 0.277 s = 10.249 s).

 More importantly, similar to the human results, scrambling the 
words in the narratives diminished the lag gradient in our model 
( Fig. 4B  ). Further scrambling at the embedding level not only 
disrupts word relationships but also removes lexical information, 
leading to an even weaker lag gradient ( Fig. 4A  ). Providing fully 
random embedding values abolishes the lag gradient even further 
by removing information from the initial nonuniform distribution 
of embedding values (SI Appendix, Fig. S7 ).  

Impact of Canal Width on the Reservoir Network’s Sensitivity 
to Input Structure. We adjusted the canal width parameter to 
examine how lag properties intrinsic to the network structure 
interact with the narrative structure of the external stimulus. 
The larger this parameter, the longer the maximum length of 
connections, and thus, the more closely the network resembles 
the random network. This parameter was previously set to 600 
for the preceding analyses and also for subsequent analyses unless 
otherwise specified.

 Like the human brain, the Limited-Canal model with a width 
parameter set to 600 demonstrates sensitivity to input structure, 
exhibiting a stronger lag gradient with more structured inputs 
( Figs. 3  and  4 ). The strongest lag gradient was observed with intact 
narratives, while embedding-scrambled narratives induced the 
weakest lag gradient, reflecting the intrinsic lag properties of this 
model. On the other hand, neural dynamics in reservoirs with 
stronger or weaker inherent lag properties fail to reflect narrative 
structure ( Fig. 5 ). With a larger width parameter (800), we 
observed a diminished lag gradient even with an intact story 
because the longer connections allow more synchronizing signals 
to be shared between neuron bins. With a narrower width param-
eter (400), a strong lag gradient is observed even with scrambled 
narratives. As the canal is narrower and longer, intuitively, the 
canal has become a hose; intrinsic lag properties due to extreme 
local structural connectivity dominate input-driven functional 
connectivity. These simulation results suggest that the reservoir 
network’s sensitivity to input structure can be modulated by its 
structural parameter.  

Processing Costs Build up More Slowly in Later Neurons. Next, 
we investigated the mechanism underlying the lag gradient. Our 
previous simulation suggests that the lag gradient emerges from 
information integration at different nested granularities (e.g., 
word, phrase, sentence, etc.), which leads to a slower accumulation 
of activity in higher- level brain areas (54). We examined the 
processing cost around event boundaries when information 
integration resets (4) in the reservoir. We created eight synthetic 
narratives with known event boundaries. By feeding synthetic 
narratives to the reservoir, we can examine the pure semantic 
boundary effect with exact knowledge of where the event boundary 
occurs. We computed each neuron bin’s average processing cost 
across events and stories.

 For each synthetic narrative, we computed the average process-
ing cost around event boundaries. To measure the 50% peak 
latency, we first identified the maximum processing cost within 0 
to 50 words after event onset. The peak latency was then defined 
as the first time point at which the processing cost reached 50% 
of this peak amplitude (SI Appendix, Fig. S8 ). See SI Appendix, 
Fig. S9  for processing costs in naturalistic narratives.

Fig. 5.   The lag gradient in Limited- Canal models with varying canal widths. 
We varied the width parameter of the Limited- Canal model from 800 to 600 
to 400, where a width of 800 trends toward fully random connectivity and 400 
represents a more extreme “hose”- like canal. We evaluated the lag gradients in 
each model variation for embedding- scrambled, word- scrambled, and intact 
versions of eight naturalistic narratives from ref. 54 (P < 0.01, FDR correction). 
The Limited- Canal model with a width parameter set to 600 replicated the 
enhanced lag gradient with intact narratives found in the human brain (54). 
With a wider (800) architecture, the lag gradient was diminished, and the 
intact and scrambled yielded a similar (lack of) gradient. With a smaller width 
parameter (400), both the intact and scrambled narratives elicited a strong lag 
gradient, suggesting that the smaller width parameter imposes a lag gradient 
regardless of the structure of the input. Only the intermediate- width model 
yielded a strong lag gradient for the more structured intact stimulus and a 
weak gradient for the scrambled stimulus, in correspondence with the human 
brain.
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 Similar to naturalistic narratives, we found an enhanced lag 
gradient in the intact synthetic narratives (SI Appendix, Fig. S7 ). 
As shown in  Fig. 6 , processing costs increase after event onsets, 
and more importantly, processing costs build up more slowly in 
later neurons, as suggested by Chang et al. ( 54 ). In coherent 
narratives, successive words tend to exhibit semantic associations 
and correlations among embeddings. Our results indicate that 
semantic shifts at event boundaries leads to an increase in pro-
cessing costs, which propagates throughout the network. 
Scrambling words disrupts the event structure, thus weakening 
the lag gradient.   

Discussion

 Our results show that the reservoir network with most brain-like 
anatomical topology (i.e., Limited-Canal model) ( Fig. 2D  ), best 
captured the sensitivity to narrative structure observed in the neu-
ral dynamics of the human brain ( Figs. 3  and  4 ). This finding 
suggests that while the same anatomical structure can produce 
different functional dynamics ( 59 ,  60 ), depending on the current 
task and prior training, the lag gradient at least partially arises 
from the network connectivity characterized by hierarchical struc-
tures. Specifically, we endowed the structure of a reservoir network 
with local connectivity and restricted input to a limited set of 
sensory neurons to replicate a gradient of lagged connectivity 
between stages of cortical processing hierarchy, as observed in 
humans listening to natural spoken narratives ( 54 ). When we fed 
minimally structured inputs, namely, embedding-scrambled nar-
ratives into these reservoir models, we observed that reservoirs 
with limited sensory neurons and a canal-like local connectivity 

structure already exhibited intrinsic lag properties ( Fig. 3 ). 
Importantly, we demonstrated that this intrinsic lag gradient 
strengthens with inputs containing more internal structure, and 
is strongest with intact narratives ( Fig. 4 ). This sensitivity to input 
structure could be adjusted by manipulating the maximum length 
of connectivity between neurons in the Limited-Canal model, 
namely, the canal “width” parameter. We found that human-like 
neural dynamics, namely, stronger lag gradients with more struc-
tured inputs, emerged only under intermediate canal widths 
( Fig. 5 ). There seems to be an optimal architecture which allows 
the network to encode information in a way that highlights the 
intrinsic hierarchical structure of the naturalistic input. Finally, 
using synthetic narratives with known semantic event boundaries, 
we showed that processing costs at event boundaries accrue more 
slowly in later neurons ( Fig. 6 ). This finding suggests a potential 
mechanism underlying the emergence of the observed lag 
gradient.

 In the Limited-Canal model, activation from input-driven neu-
rons must propagate through local connections to reach neurons 
located progressively farther away. Intuitively, these neurons can 
be viewed as a succession of low pass filters where successive 
(higher order) neurons thus respond with progressively slower 
dynamics. As shown in  Fig. 6 , neurons that are farther from the 
input source exhibit increasing response delays, and their activity 
persists for longer durations. Critically, because all neurons share 
the same leak rate, which determines how much of each single 
neuron’s previous state is retained at each time step (see the 
 Materials and Methods  section for details), these additional delays 
must arise from macroscale architectural features of the network, 
namely the input distribution and local connectivity.

Fig. 6.   Processing cost around event boundaries. (A) We fed intact, word- scrambled, and embedding- scrambled synthetic narratives into the Limited- Canal 
model (width = 600) and extracted processing costs around event boundaries. Since the word- scrambled version lacks inherent event boundaries, we used those 
from the intact version. The averaged, z- scored time courses are shown. (B) 50% peak latencies of processing cost increases after event onsets (SI Appendix, 
Fig. S8). Error bars show 95% CI across stories. Under the intact conditions, latency differences were significant between all neuron bin pairs except between 
bin 1 and bin 2 (both containing sensory neurons) (two- sample t test, df = 7, P < 0.05, corrected for familywise error (FWE)). Processing costs rising more slowly 
and persisting longer in later neurons, especially in intact narratives, may contribute to the lag gradient. No significant latency differences were found between 
neuron bins in the two scrambled conditions after FWE correction.
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 To gain a more mechanistic understanding of the network’s 
temporal dynamics, we introduced brief pulse inputs to each neu-
ron bin in turn and examined their temporal response dynamics. 
For each neuron, we measured the maximum value of its response 
to the input pulse, and then identified the time when its response 
returned to 20% of this value, as the impulse response time con-
stant. As shown in SI Appendix, Fig. S10 , the bin directly receiving 
the input consistently exhibited the shortest time constant, indi-
cating tight coupling to fast-changing inputs. In contrast, time 
constants increased progressively in bins located farther from the 
input-driven bin. These results demonstrate that the temporal 
dynamics of each bin are not determined by its intrinsic properties, 
but are shaped by its topographical position relative to the 
input source.

 An intrinsic lag gradient has been reported during the resting 
state ( 60   – 62 ) and with scrambled narrative stimuli ( 54 , 
 SI Appendix, Fig. S8B  ) in the human brain using within-subject 
functional connectivity, although at a scale much smaller (−1 to 
1 s) than the narrative-driven lag gradient (up to 9 s). Similar to 
the human brain, the Limited-Canal model shows intrinsic lag 
properties with embedding-scrambled narratives ( Fig. 3 ), which 
are enhanced by narrative structure ( Fig. 4 ) with a width param-
eter set to 600 ( Fig. 4 ). The small interregion lag in the wider 
model (width parameter 800) for both intact and scrambled nar-
ratives supports the claim that intrinsic lag properties are necessary 
to simulate human results. A strong lag gradient in the narrower 
model (width parameter 400), even under the scrambled condi-
tion, shows that not all network structures with intrinsic lag prop-
erties can reproduce the human results; in this network, the 
network structure imposes the lag gradient regardless of the input 
structure. The intermediate model (width parameter 600), in 
which input signals propagate to but do not dominate high-level 
neurons, behaves most similarly to the human brain.

 Note that, in the human studies, the intrinsic lag gradient was 
only observed with within-subject functional connectivity anal-
ysis ( 54 ,  60   – 62 ), which retains idiosyncratic intrinsic signals, 
while the narrative-driven lag gradient was revealed only by 
intersubject functional connectivity analysis ( 54 ), which isolates 
the input-driven signals ( 63 ,  64 ). Unlike the human brain, the 
reservoir network does not have intrinsic activity fluctuations 
independent of external input, which explains why interreservoir 
and within-reservoir analyses yield similar results (SI Appendix, 
Fig. S11 ).

 In our previous simulation ( 54 ), different levels of structural 
boundaries between events and their temporal integration func-
tions were explicitly specified. In contrast, this study provides word 
embeddings from naturalistic narratives, which contain inherent 
semantic structures but no explicitly assigned boundaries. 
Moreover, the reservoir models’ responses to these implicit seman-
tic boundaries are not governed by a predefined temporal integra-
tion function but the models’ network structures. We found that 
semantic discontinuities at event boundaries result in abrupt shifts 
in the geometric orientations of word embeddings when transi-
tioning to a new event ( 51 ). This leads to increased processing 
costs that propagate through the network ( Fig. 6 ). Word scram-
bling can effectively remove these processing cost increases because 
it disrupts local semantic coherence (corresponding to events), 
thereby preventing the propagation of processing costs through 
the network and reducing the lag gradient ( Fig. 4B  ).

 Chang et al. ( 54 ) showed that the lag gradient is robust to 
varying lengths of linguistic/narrative units (for example, sentence 
length) and speech rate, as well as some variations in the temporal 
integration function, but is impacted by interparagraph silences, 
which naturally occur in spoken narratives. Processing cost after 

event onset ( Fig. 6 ), as an analog to the temporal integration func-
tion, does not exactly correspond in shape to the linearly increasing 
temporal integration function adopted by Chang et al. ( 54 ). This 
may explain why interparagraph silent pauses are not necessary 
for the emergence of the lag gradient from our model. Unlike the 
BOLD signals simulated by Chang et al. ( 54 ), processing costs 
started to decrease before event offsets, probably because the nov-
elty of the synthetic input saturates by the end of events. Therefore, 
pauses without any input are not necessary to desaturate the pro-
cessing cost.

 A hierarchy of processing timescales is suggested to underlie 
both the lag gradient and the covarying lengths of cortical events 
revealed by event segmentation analyses ( 54 ). Indeed, in the 
Limited-Canal model, we observed both phenomena ( Fig. 4  and 
 SI Appendix, Fig. S2 ). Areas farther from the input display a 
greater lag compared to closer areas, and they also exhibit a pref-
erence for longer events as quantified using hidden Markov models 
(HMMs). This suggests that the lag gradient and increasingly 
longer-duration events are intrinsically related. Interestingly, this 
is not the case for sorted neurons in the Distributed-Random [the 
classic model in Dominey ( 51 )]. While we were able to confirm 
that slower neurons prefer longer events, we did not observe the 
lag gradient in the sorted neurons in the classic model (SI Appendix, 
Fig. S12 ). This is because the classic model violates one of the 
structural conditions required to produce the lag gradient: Input 
activations must be restricted to a subset of neurons. Because the 
inputs are projected with a fixed probability to all reservoir neu-
rons in the classic model, these neurons are synchronized by the 
common input and thus cannot produce the lag gradient. These 
results show that the lag gradient provides a complementary 
insight relative to the structure revealed by the HMM.

 We found that the model with the more brain-like structure 
(i.e., Limited-Canal model) ( Fig. 2D  ) best reproduced neural 
dynamics observed in the human brain ( Figs. 3  and  4 ). In a similar 
vein, it has been reported that more biologically realistic architec-
tures maximize the reservoir network’s memory capacity relative 
to the wiring cost ( 48 ). One way to further improve the 
Limited-Canal model is to introduce a long-distance shortcut as 
an analog to white matter fasciculi from input-driven sensory areas 
to frontal associative areas that are quite far apart in terms of 
Euclidean distance. For example, the inferior fronto-occipital fas-
ciculus ( 65 ) provides a direct shortcut between the occipital and 
frontal cortex. This could produce inconsistencies in the temporal 
processing hierarchy. Interestingly, such inconsistencies can be 
observed in Chien and Honey ( 4 ). In their data, a medial prefron-
tal area in the DMN (LH_DefaultB_PFCd_1) has an unusually 
fast integration time constant relative to its anatomical location. 
We suggested that this is due to long-distance white matter con-
nections that provide a direct path from input-driven areas to this 
region. We demonstrated how such effects could be produced in 
simulations with the reservoir model ( 50 ,  52 ). Future research 
should determine the effects of these long-distance connections 
on the lag gradient.

 In conclusion, we found that the brain-inspired Limited-Canal 
architecture ( Fig. 2D  ) endows the recurrent reservoir network with 
intrinsic lag properties even without task-specific training ( Fig. 3 ). 
Interestingly, while scrambled input reveals an intrinsic lag gradi-
ent, structured semantic input from narrative word embeddings 
further enhances the lag gradient ( Fig. 4 ). This sensitivity to input 
structure is modulated by the structural parameter, canal width 
( Fig. 5 ). These findings imply a “sweet spot” when adapting the 
network structure to the structure of naturalistic input. Similarly, 
the structure of the human brain may be optimized through evo-
lution and learning to process hierarchical regularities in the D
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environment ( 66 ). The brain, in turn, generates language/narra-
tives with an isomorphic structure ( 53 ,  67 ), where different levels 
of temporal structure in narrative may have evolved to match the 
representational capabilities of the cortex ( 51 ).  

Materials and Methods

Reservoir Networks. In reservoir computing, a random dynamic recurrent neu-
ral network is stimulated with input, and the resulting rich high dimensional 
states are then harvested (44). Typically this harvesting consists in training the 
output weights from reservoir units to output units, and then running the system 
on new inputs and collecting the resulting outputs from the trained system. In 
the current research, we focus our analysis directly on the rich high- dimensional 
states in the reservoir itself. That is, we do not train the reservoir to perform any 
transformation on the inputs. Instead, we analyze the activity of the reservoir 
neurons themselves, as a proxy for cortical activity. Neural activity in such recurrent 
networks has been demonstrated to be usefully comparable to primate cortical 
activity (47, 68, 69).

The reservoir simulation of human narrative processing consists of two com-
ponents. First, the language model (LM) generates word embedding vectors, 
and second, the reservoir generates from these embeddings the spatiotemporal 
trajectory of neural activation. Given the input narrative, input words are trans-
formed into 100- dimensional word embedding vectors by the Wikipedia2Vec 
model, pretrained on the three billion words 2018 Wikipedia corpus (70). These 
vectors are then input to the reservoir, a neural network with fixed recurrent 
connections. Because of the human narratives we use, and the LM used to gen-
erate embeddings, this input is already a structured trajectory, and the reservoir’s 
internal states encode and generate a rich high dimensional representation of 
this trajectory (51).

Our discrete- time, tanh- unit echo state network with N reservoir units and K 
input units is characterized by the state update equation:

x(t + 1) = (1−α)x(t) + α ⋅ f
(

Wx(t)+ Winu(t)
)

,

where x(n) is the N- dimensional reservoir state, f is the tanh function, W is the N 
× N reservoir weight matrix, Win is the N × K input weight matrix, u(n) is the K 
dimensional input signal, α is the leak rate (0.2). The matrix elements of W and 
Win are drawn from a random distribution.

The reservoir was instantiated using easyesn, a python library for recurrent 
neural networks using echo state networks (https://pypi.org/project/easyesn/) 
(71). We used a reservoir of N = 1,000 neurons, with input dimension of K = 
100. The W and Win matrices are initialized with uniform distribution of values 
from −0.5 to 0.5. Multiple reservoir instances (corresponding to experimental 
subjects) were generated by using different seed values in this initialization. 
Unless otherwise stated, we used 40 distinct reservoir instances in each of the 
different experiments. The leak rate was 0.2, a standard value that allows the 
neuron to maintain an influence of its history and sensitivity to inputs. In order to 
implement the connectivity architecture where EDR applies, i.e. the canal models, 
we applied the following procedure to the connection weights W. All connections 
greater than max_length (600), are set to zero. Then, for all connections W[i,j] 
of length equal abs(i−j):

W
[

i, j
]

= W
[

i, j
]

∗
((

max_length− length
)

∕max_length
)3

∗
(

1+ i∗gradient
)

∗gain.

The parameter gradient = 7.5e−4 and gain = 1.75. The gradient term provides 
for an increase in local connectivity as the distance from the input increases, as 
observed in the cortex (57). The max_length parameter was 600, except when 
we specifically tested the effects of varying it to 400 or 800. For the models with 
limited sensory neurons, the input matrix was accordingly updated so that inputs 
from the 100- element word embedding vectors were provided to only the first 
300 (bins 1 and 2) of the 1,000 neurons (Fig. 7).

In summary, in order to establish the structural requirements for reservoirs 
that are necessary to produce the lag gradient, we examine reservoirs that vary 
according to two parameters, the distribution of sensory neurons and the reservoir 
architecture. Sensory neurons, i.e., neurons receiving external input, are either 
distributed over the entire reservoir (distributed) or limited to a subset of neurons 

(limited). The architecture refers to whether the reservoir itself has a connectivity 
structure with neurons being connected with uniform probability (random), or 
having the probability of connectivity between neurons proportional to the dis-
tance between them, thus producing a flow along these local connections (canal). 
Canal width refers to the maximum length of connections, as expressed in Eq. 
2. The majority of the experiments are performed with canal width of 600, with 
specific tests to examine the effects of width.

Narrative Inputs.
Naturalistic narratives. Eight naturalistic narratives were directly generated from 
the text transcripts of the narratives used by Chang et al. (54). The transcripts 
correspond to the narratives: Sherlock, “Merlin,” “The 21st year,” “Pie Man (PNI),” 
“I Knew You Were Black,” “The Man Who Forgot Ray Bradbury,” “Running from 
the Bronx (PNI),” and “Pie Man” (72). The transcripts are available at http://data-
sets.datalad.org/?dir=/labs/hasson/narratives/stimuli/transcripts. Each word in 
the text file was used to generate a 100- element word embedding vector using 
Wikipedia2Vec. Rare (<4%) words that were not found in the three billion word 
corpus were skipped. The eight resulting narrative inputs varied in length from 
947 to 2861 words (mean = 1,798 words).
Synthetic narratives. Eight synthetic narratives were generated from randomly 
selected Wikipedia pages, using https://pypi.org/project/wikipedia/. Each narra-
tive was made up of 20 events. A given Wikipedia page was used to generate 
one narrative event, meaning that each event revolved around the topic of that 
Wikipedia page and was generally unrelated to the other 19 events. A given event 
had a minimum of 25 words, plus a variable component that varied from 0 to 
150 words, for a mean event length of 100 words. Once the narrative was thus 
generated, each word was used to generate the 100- element word embedding. 
The resulting eight narratives varied in length from 1,753 to 2,227 words (mean 
= 1,948 words). We generated these synthetic narratives in order to have direct 
access to the ground truth for event boundaries.
Word scrambling. Each narrative is represented as a sequence of the 100- element 
word embeddings. In the word scrambling process, the order of the sequence 
was permuted, while the embeddings were maintained intact. This manipulation 
preserves the overall structure of the embeddings themselves, but will tend to 
disrupt the narrative structure of the embedding sequence.
Embedding scrambling. In embedding scrambling, each of the 100- element 
word embeddings in the sequence of embeddings was permuted, each with a 
different permutation. This disrupts any regularities in embedding dimensions 
across words (as well as the overall narrative structure), while preserving the same 
general distribution of embedding values.

Reservoir Data Preprocessing.
Processing cost. In the reservoir network, the raw output of each neuron ranges 
from –1 to 1, resulting from the random initialization of input and reservoir 
weights between –0.5 and 0.5, with tanh as the activation function. Both positive 
and negative activations indicate neural engagement in computation. Since BOLD 
signal reflects hemodynamic changes driven by the metabolic demand of active 
neurons, following Hinaut and Dominey (58), we computed the absolute change 
in activity between consecutive time steps for each neuron. This metric captures 
input- driven updates across neurons within a bin and aligns with the idea that 
integrating new words becomes less effortful when they are more predictable, 
such as toward the end of a sentence, due to the accumulation of contextual 
information (73–75).
Virtual region of interest. We create six virtual regions of interest (ROI) by 
binning the neurons into groups, each consisting of 166 to 167 neurons. For 
the models with limited sensory neurons (Limited- Random and Limited- Canal 
models), only the two early ROIs receive input directly. For the models created by 
the EDR (Limited- Canal and Distributed- Canal models), the virtual ROIs reflect the 
topology of the network. Namely, high- level regions could receive input- driven 
signals indirectly across a series of local connections.

Interreservoir Functional Connectivity (IRFC). Chang et al. (54) computed 
intersubject functional connectivity at different lags to estimate the temporal lag 
between neural networks. In this study, we compute IRFC between virtual areas, 
using the leave- one- out method; i.e., correlation between the time series from 
each reservoir instance and the average time series of all the other instances (63).

[1]

[2]
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Before computing the correlation, data from the first 400 and last 20 time steps 
were discarded to remove large signal fluctuations at the beginning and end of 
the time course due to signal stabilization and stimulus onset/offset. We then 
averaged time series across neurons within each bin and z- scored the resulting 
time series.

Lag- correlations were computed by circularly shifting the time series such 
that the nonoverlapping edge of the shifted time series was concatenated to the 
beginning or end. The left- out reservoir was shifted while the average time series 
of the other reservoir instances remained stationary. Fisher’s z transformation 
was applied to the resulting correlation values prior to further statistical analysis.

Peak Lag Matrix. Following Chang et al. (54), we computed the region × region 
× lag- IRFC matrix and extracted the lag with peak correlation value for each region 
pair. The peak correlation value was defined as the maximal IRFC value within the 
window of lags from −50 to +50 time steps (=50 words). The mean word duration 
in Sherlock is approximately 0.277 s. Thus 50 time steps roughly correspond to  
15 s; we required that the peak IRFC be larger than the absolute value of any negative 
peak and excluded any peaks occurring at the edge of the window.

To exclude IRFC peaks that only reflected shared spectral properties, we gen-
erated surrogates with the same mean and autocorrelation as the original time 
series by time- shifting and time- reversing. We computed the correlation between 
the original seed and time- reversed target with all possible time shifts. Since we 
shift the time series circularly, the number of possible lags equals the number of 
time points. The resulting IRFC values served as a null distribution. A one- tailed 
z- test was applied to compare IRFCs within the window of lag −50 to +50 TRs 
against this null distribution. The FDR method was used to control for multiple 
comparisons (seed × target × lags; q < 0.01) (55). When assessing IRFC for each 
story, only this first test was applied.

For the mean IRFC across stories, a second statistical test was also applied, 
i.e., a parametric one- tailed one- sample t test to compare the mean IRFC against 
zero (N = 8 real or synthetic stories) and corrected for multiple comparisons by 
controlling the false discovery rate (FDR; 6 seed × 6 target × 31 lags; q < 0.01) 
(55). Only IRFC that passed both tests were considered significant.

The Latency of Processing Cost after Event Onset. The processing costs 
around event boundaries (−50 ~ 100 time steps) were extracted and averaged 
across events and reservoirs for each of the eight synthetic stories. The latency of 
processing cost after event onset was defined as the time step when the process-
ing cost reached 50% of its peak amplitude. Paired t tests (N = 8) were applied 
to compare processing cost latencies in different neuron bins. The FWE method 
was used to control for multiple comparisons (15 bin pairs).

Data, Materials, and Software Availability. This research is realized in the 
open code spirit, and indeed benefitted from open code and data for development 
of the reservoir model (71), and the language model for word embeddings. The 
original Narrative Integration Model code in python (51), and all required data 
are available on GitHub https://github.com/pfdominey/Narrative- Integration- 
Reservoir/. The EDR model used in this study, including all necessary data, can 
be found at: https://github.com/pfdominey/Reservoir_lag_gradient/.
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Fig. 7.   Reservoir topologies. Reservoir topologies vary along two dimensions, the distribution of neurons receiving the input (distributed/limited) and whether 
reservoir connectivity is constrained by the EDR (no/random/ or yes/canal). The EDR produces a canal- like topology. (Upper Left) In the classic Distributed- Random 
configuration, the 100- element word embedding vector is projected to all reservoir neurons (W_in). The connectivity matrix specifies that all neurons project to 
all other neurons with a density of 0.2. (Lower Right) In the Limited- Canal reservoir, inputs are restricted to the first 300 reservoir units. The connectivity matrix 
is structured by an EDR whereby the probability of two neurons being connected decreases exponentially with their distance. This yields a connectivity matrix 
that is organized along the diagonal where i ~ =j in the W matrix. For the classic reservoir, neurons with different temporal integration constants are scattered 
across the network, while for the Limited- Canal reservoir, topologically organized integration time constants are clearly observed across successive groups of 
neurons with distance from the input (SI Appendix, Fig. S1).
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