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Abstract—Multivariate cross-classification is a powerful tool 
for decoding abstract or supramodal representations from 
distributed neural populations. However, this approach 
introduces several methodological challenges not encountered in 
typical multivariate pattern analysis and information-based brain 
mapping. In the current report, we review these challenges, 
recommend solutions, and evaluate alternative approaches where 
possible. We address these challenges with reference to an example 
fMRI data set where participants were presented with brief series 
of auditory and visual stimuli of varying predictability with the 
aim of decoding predictability across auditory and visual 
modalities. In analyzing this data set, we highlight four particular 
challenges: response normalization, cross-validation, direction of 
cross-validation, and permutation testing. 
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I. INTRODUCTION 
Multivariate cross-classification has become an increasingly 

prevalent tool for decoding abstract, cross-modal, or supramodal 
neural representations [1]. Consider an experimental design with 
two fully-crossed factors, each with two levels: Factor A (e.g., 
predictability: high, low) and Factor B (e.g., modality: auditory, 
visual). In the cross-classification framework, a classifier is 
trained to discriminate between the levels of, e.g., Factor A (high 
vs. low predictability) based on data from only one level of 
Factor B (e.g., the auditory modality), then tested on data from 
the left-out level of Factor B (the visual modality). Successful 
cross-classification indicates that the patterns of activation in a 
given brain region encode information about Factor A that 
generalizes across Factor B. Note that this approach is a specific 
case of more generally cross-validating across samples to ensure 
that information about condition assignments generalizes 
across, e.g., particular stimuli [2]. 

This more complex design introduces several analytic 
challenges not typically encountered in conventional 
classification analyses, and not explicitly addressed in prior 
methodological reports [2], [3]. In the following, we outline 
these challenges in the context of an illustrative example data set 
where participants were presented with brief series of auditory 
and visual stimuli of varying levels of temporal predictability. 
We show in what ways different analytic choices implicitly test 
different questions, and bring attention to the varying options 
and their merits to better inform future studies. 

II. FMRI DATA

Twenty-six participants were presented with brief series of 
auditory, visual, or audiovisual stimuli of varying predictability 
while performing a cover task. Predictability was manipulated 
using four different levels of Markov entropy quantifying the 
probabilistic transition constraints among elements within a 
series. This amounts to a 3 (modality) x 4 (entropy) factorial 
design with 12 conditions total. We focus on classifying the 
highest and lowest entropy levels of the auditory and visual 
series. Auditory series consisted of a repeated sampling of four 
tone tokens, while visual series consisted of four shape tokens 
presented at four locations surrounding a central fixation cross, 
with stimuli presented at 3.3 Hz for ~11 s. There were four runs, 
each containing three instances of each condition. Functional 
data were preprocessed in FSL [4], and a conventional 
univariate GLM was then used to estimate responses at each 
voxel for each experimental condition. Ultimately, this resulted 
in four samples (one for each run) per each of the eight 
conditions of interest (four levels of entropy in the auditory and 
visual modalities). Further analyses were confined to a 
consensus gray matter mask comprising the union of individual 
gray matter masks across participants. The following 
multivariate analyses were performed using the PyMVPA 
software package [5]. Cross-classification was performed using 
linear support vector machines (SVMs) and leave-one-
participant-out cross-validation (Fig. 1) within spherical 
searchlights constrained to the union gray matter mask. Each 
searchlight had a 3-voxel radius (6 mm), and on average 
included 107 voxels (SD = 21 voxels). 

III. METHODOLOGICAL CHALLENGES

A. Response Normalization 
Prior to multivariate analysis, response patterns are typically 

normalized (i.e., z-scored) in one of two ways: a) normalized 
across samples (i.e., conditions) per feature, which alters 
response patterns but captures relative differences in voxel 
responses across conditions; or b) normalized across features 
(i.e., voxels) per sample, which alters voxel responses across 
conditions but preserves the relative shape of the pattern per 
condition [2]. Normalizing across features ensures that a 
classifier cannot capitalize on regional-average differences in 
activation (e.g., within a searchlight) across conditions, while 
normalizing across samples does not, and emphasizes voxelwise 
differences in activation across conditions without necessarily 
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respecting the rank order of response magnitudes in a pattern. 

Cross-modal searchlight classification of high vs. low 
entropy levels with leave-one-participant-out cross-validation 
(section B) was applied to data preprocessed using three 
normalization schemes: no normalization, normalization across 
samples, and normalization across features (Fig. 2). To 
normalize across samples, we z-scored voxelwise responses for 
the four original levels of entropy within each level of the cross-
validation factor (modality; nested within runs, participants), 
then averaged these samples across runs. To normalize across 
features, response patterns were averaged across runs and z-
scored per sample within each searchlight. 

Compared to no normalization, normalization across 
features increased searchlight classification accuracies 
(Wilcoxon signed-rank test; W = 7.9 × 109, p < .001), while 
normalization across samples decreased searchlight accuracies 
(W = 7.4 × 109, p < .001). Both normalization schemes 
significantly increased the variance of the distribution of 
searchlight accuracies (Levene’s test; across features: W = 4.5 × 
103, p < .001; across samples: 3.5 × 104, p < .001). Both the non-
normalized data and data normalized across features produced 
distributions of searchlight accuracies with a heavy right tail (no 
normalization: skewness = .049, p < .001 against normal 
distribution; across features: .041, p < .001), while normalizing 
across samples produced a distribution of accuracies not 
significantly skewed (skewness = .009). In evaluating 
searchlight classification accuracies, a heavy right tail is 
desirable as it indicates a greater proportion of searchlights with 
high accuracies. Finally, we used permutation tests (section D) 
to assess which searchlights yielded significant classification 
accuracies at p < .05 (uncorrected) for each normalization 
scheme. Normalization across features resulted in the largest 
number of significant searchlights (7,899), followed by 
normalization across samples (6,721) and no normalization 
(6,034). In section D, we estimate cluster-level significance 
controlling the familywise error rate. 

For the current data set, we opt for normalization across 
features prior to further analysis, because this yields a 
distribution of searchlights more similar to the non-normalized 

data and ensures that the classifier is not capitalizing on 
regional-average differences in activation. Note however that 
the commonly-used pattern-correlation classifier implicitly 
normalizes across features [2]. Furthermore, for certain 
questions, there may be a theoretical motivation for 
incorporating regional-average differences in activation into the 
decoding procedure. For searchlight analysis, normalization 
across features must be performed per searchlight rather than 
across the whole brain prior to running the searchlight 
algorithm. When normalizing across samples, we recommend 
normalizing responses per feature within each level of the cross-
validation factor (nested within runs, participants, etc); this 
effectively centers voxelwise responses for each level of the 
cross-validation factor. Normalizing across samples without 
respecting the boundaries of the cross-validation factor—in this 
case, modality—will accentuate between-modality response 
differences that may overpower any information about the factor 
of interest that is common across modalities. Normalization 
across samples is only applicable to data sets where the factor of 
interest comprises several or more samples. 

B. Cross-Validation 
We implemented leave-one-participant-out cross-validation 

[6] due to having relatively few independent scanner runs, and 
because this provides straightforward second-level inference 
[7]. To perform cross-modal classification, we trained each 
classifier on samples from one sensory modality in N−1 
participants, then tested the classifier on samples from the other 
sensory modality in the left-out participant (Fig. 1). This 
procedure was repeated until each participant served as the test 
participant for both sensory modalities, then the classification 
accuracies were averaged across left-out participants. Studies 
with sufficient scanning runs may opt to perform a similar 
procedure within each participant using leave-one-run-out 
cross-validation, then proceed to a more conventional group-
level analysis [8]; but see [7]. Cross-validation should respect 
the stratification of the data and ensure that there is a balanced 
frequency of classes in each fold. 

C. Direction of Cross-Validation 
In many applications of multivariate pattern analysis, 

 
Fig. 1. Cross-validation and label permutation must respect data stratification. Both participant and modality constrain the exchangeability block, and labels of the 
factor of interest (entropy) must be permuted within levels of the cross-validation factor (modality). 



classifiers are cross-validated across scanning runs or 
participants, and particular training–test splits are not of 
experimental interest. However, for multivariate cross-
classification, asymmetries in training and testing on different 
levels of the cross-validation factor may be theoretically 
significant [9]. In practice, significance can be estimated based 
on each cross-validation direction individually, or the average of 
both directions. To assess the significance of cross-validation 
asymmetry (i.e., the difference in accuracy for the two 
directions), we performed a simple permutation test where the 
cross-validation direction was randomly permuted in each left 
out participant for each searchlight, then the difference between 
directions was computed and averaged across participants (Fig. 
3). In our data, only 578 searchlights (0.3% of all searchlights) 
exhibited significant asymmetry at p < .05 (uncorrected); 
significant asymmetry in this many searchlights may be 
expected by chance. Although future studies might focus on the 
classification accuracy averaged across cross-validation folds, 
we recommend inspecting both directions for asymmetries [1]. 

D. Permutation Tests 
Permutation tests are generally regarded as superior to 

parametric methods when testing the significance of cross-
validated classifier performance on stratified data [8]. Cross-
classification introduces an additional level of stratification; 
namely, the cross-validation factor. For this reason, we 
recommend permuting the condition labels of interest within 
each level of the cross-validation factor nested within more 
typical exchangeability blocks (runs, participants; Fig. 1) [8]. 
Permuting labels of interest across levels of the cross-validation 
factor may result in problematic null distributions and inflated 
p-values. For the present data, we permuted the condition labels 
(entropy levels) within each sensory modality within each 
participant, as data were already averaged across runs. After 
randomly shuffling the labels of interest within these blocks, we 
recomputed the entire cross-validation procedure per 
searchlight. This was repeated 1,000 times to construct a null 
distribution of searchlight accuracy maps. To perform cluster-
level inference we first computed residual accuracy maps by 
subtracting the mean accuracy map from each participant’s map. 

The mean smoothness of these residual accuracy maps was then 
supplied to a Monte Carlo procedure using random Gaussian 
noise to estimate cluster-level significance. Reported clusters 
survived at a cluster-forming threshold of p < .05 and a cluster-
level threshold of p < .05 (controlling the familywise error rate, 
cluster extent of 123 voxels). Although we estimated 
significance based on the mean accuracy across both cross-
validation directions, searchlights within the surviving clusters 
may prefer one direction over another (Fig. 4). 

 
Fig. 2. Effect of response normalization on cross-modal searchlight classification of high vs. low entropy with leave-one-participant-out cross-validation. Each 
point represents the classification accuracy at a single searchlight for two different normalization schemes. Colors indicate significant searchlight classification 
accuracies (p < .05, uncorrected): pink, significant exclusively with no normalization; green, significant exclusively for normalization across samples; orange, 
significant exclusively for normalization across features; purple, significant for both compared normalization schemes. Theoretical chance accuracy is .50. 

 

 
Fig. 3. Cross-validation asymmetry for cross-modal searchlight classification 
of high vs. low entropy. Color indicates significant classification (p < .05, 
uncorrected): purple, significant when estimated on accuracies averaged across 
both directions; green, orange, significant when estimated on test auditory and 
test visual directions, respectively. Searchlights with significant asymmetry at 
p < .05 (uncorrected) are plotted at full opacity with a black border. 

 



IV. DISCUSSION 
We presented four lessons learned in performing 

multivariate cross-classification. These analytic challenges arise 
because factorial designs introduce an additional layer of data 
stratification. Cross-validation must respect data stratification, 
and in cases where the cross-validation factor has only two 
levels, we recommend extending cross-validation to include 
left-out runs or participants. This sort of cross-validation scheme 
may yield asymmetric classification accuracies, and these 
asymmetries may be of theoretical interest [9]. A simple 
permutation-based approach can be used to estimate the 
significance of asymmetry. To assess the statistical significance 
of cross-classification accuracies, we recommend using 
permutation tests that respect the stratification of the data; labels 
of interest should be permuted within each level of the cross-
validation factor to avoid generating overly-permissive null 
distributions. Finally, we note that these recommendations are 
provisional—the best choices may vary across data sets and 
questions. However, each of these analytic decisions must be 
considered carefully, as different choices imply different 
assumptions and may impact the significance or interpretability 
of results. 
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Fig. 4. Significant clusters for cross-modal classification of high vs. low entropy with leave-one-participant-out cross-validation. Scatter plot accuracies are jittered 
by .01 to visualize overlapping accuracies. Searchlights with significant cross-validation asymmetry at p < .05 (uncorrected) are plotted with a black border. 


