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Abstract

Storytelling—an ancient way for humans to share individual experiences with others—has been found to induce neural alignment 
among listeners. In exploring the dynamic fluctuations in listener–listener (LL) coupling throughout stories, we uncover a significant 
correlation between LL coupling and lagged speaker–listener (lag-SL) coupling over time. Using the analogy of neural pattern (dis)sim-
ilarity as distances between participants, we term this phenomenon the “herding effect.” Like a shepherd guiding a group of sheep, 
the more closely listeners mirror the speaker’s preceding brain activity patterns (higher lag-SL similarity), the more tightly they cluster 
(higher LL similarity). This herding effect is particularly pronounced in brain regions where neural alignment among listeners tracks 
with moment-by-moment behavioral ratings of narrative content engagement. By integrating LL and SL neural coupling, this study 
reveals a dynamic, multibrain functional network between the speaker and the audience, with the unfolding narrative content playing 
a mediating role in network configuration.
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Introduction
Humans use narratives to convey complex temporally structured 
sequences of thoughts to one another (Bruner 1986, Willems et 
al. 2020). This kind of communication is manifested through a 
process of neural “alignment” or “coupling” (Pickering and Gar-
rod 2004, Hasson et al. 2012), whereby the speaker guides the 
listener(s) through a sequence of brain states to arrive at an under-
standing of the ideas or events the speaker intends to convey. 
Spoken stories have been found to drive neural alignment among 
listeners [listener–listener (LL) coupling] throughout the corti-
cal language network and into higher-level areas of the default 
mode network (Chen et al. 2017). On the contrary, asymmetric, 
time-lagged coupling has been observed between the speaker and 
listener(s) [speaker–listener (SL) coupling] in an overlapping set of 
high-level cortical areas (Stephens et al. 2010, Zadbood et al. 2017, 
Liu et al. 2022).

The overall efficacy of a given narrative has been shown to 
vary across individuals. Both higher LL neural coupling and higher 
SL neural coupling have been separately associated with better 
behavioral estimates of speech comprehension across individu-
als (Stephens et al. 2010, Zadbood et al. 2017, Cohen et al. 2018, 

Zheng et al. 2018, Davidesco et al. 2023, Liu et al. 2019, 2022, Pan 
et al. 2020, Meshulam et al. 2021, Nguyen et al. 2022, Zhang et al. 
2022, 2022, Zhu et al. 2022, Chen et al. 2023). Individuals perform-
ing better in the post-test often showed higher neural coupling 

with the speaker or other listeners.

However, as the story dynamically evolves over time, it remains 

unclear how the SL coupling influences LL coupling. We aim to 

provide a novel, unified framework on how multibrain neural 

dynamics unfold between the speaker and listeners over time. 

We hypothesized that LL and SL neural coupling will tend to be 

correlated over time. We refer to this as the “herding” hypothesis 

throughout the article. Our rationale is as follows: if we consider 

the intersubject (dis)similarity of brain activity patterns within 
different cortical regions as the “distance” between subjects, SL 
dissimilarity reflects the distance between the speaker and listen-
ers, while LL dissimilarity reflects the distance among listeners 
(Fig. 1). Under this framework, the herding hypothesis suggests 
that when listeners more closely follow the speaker, they tend 
to cluster more closely to each other; conversely, when they lose 
track of the speaker, they disperse in various directions (Finn et al. 
2020).
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Figure 1. The herding hypothesis. (a) We use neural pattern dissimilarities to quantify the distances between the speaker and listeners (SL) and the 
distances among listeners (LL). (b) The herding hypothesis proposes that lag-SL pattern (dis)similarity will correlate with LL (dis)similarity over the 
course of a narrative. (c) In other words, over time, listeners will tend to cluster when they mirror the speaker closely, like a group of sheep guided by a 
shepherd. Gray points in the scatter plot correspond to pattern similarities at each time point in an example story. Note that SL coupling was 
computed using a lag of −10 to −1 TRs (speaker activity precedes by 15–1.5 s). See Supplementary Fig. S1 for alternative hypotheses where SL and LL 
coupling converge and diverge in different ways.

We also hypothesized that, like a shepherd, the speaker first 
enacts the target brain states (capturing linguistic or narrative 
content). Then, the listeners re-enact similar brain states shortly 
after that. To focus on brain activation patterns that occur first in 
the speaker’s brain and later in the audience’s brains, we com-
puted SL pattern dissimilarity with the speaker preceding the 
listeners across a window of lags ranging from −10 to −1 TR (repeti-
tion time) (1 TR = 1.5 s), based on previous studies showing that LL 
neural similarity peaks at lag 0, while SL neural similarity peaks 
within the selected lag window (Stephens et al. 2010, Dikker et al. 
2014, Silbert et al. 2014, Zadbood et al. 2017, Liu et al. 2022). LL 
neural similarity tends to be synchronous because each listener’s 
neural dynamics are similarly locked to the temporal structure of 
the speech (Lerner et al. 2011, Hasson et al. 2015). On the contrary, 
in alignment with the flow of information in natural communica-
tion, we expected the listener’s neural dynamics to lag after the 
speaker’s neural dynamics (Stephens et al. 2010). In our analyses, 
we also validated the range of lags by examining peak neural sim-
ilarity across an extended lag window of −10 to 10 TR (Fig. 2). The 
presence of a notable herding effect in this context would sug-
gest that the listeners congregate around the trajectory outlined 
by the speaker’s brain activity 15–1.5 s earlier in time.

From a mathematical standpoint, the fluctuating LL and lag-SL 
time series could be positively correlated, negatively correlated, 
or uncorrelated (Supplementary Fig. S1). Two related research 
threads motivated our hypothesis about the relationship between 
LL coupling and SL coupling. First, prior research has indicated 
that increased LL neural similarity reflects listeners converging on 
a shared understanding of a speech stimulus (Cohen et al. 2018, 
Davidesco et al. 2023, Meshulam et al. 2021, Zhang et al. 2022, 
Chen et al. 2023). Second, increased lag-SL neural similarity sig-
nifies that the listener’s internal representation of the speech is 
aligning with that of the speaker (Stephens et al. 2010, Zadbood 

et al. 2017, Zheng et al. 2018, Davidesco et al. 2023, Liu et al. 2022, 
Nguyen et al. 2022, Zhang et al. 2022, Zhu et al. 2022). We hypoth-
esized that these two scenarios would tend to co-occur, resulting 
in a positive correlation between LL and lag-SL over the course of a 
narrative. Alternative scenarios to the predicted positive correla-
tion between LL and lag-SL across time points include the absence 
of correlation between LL and lag-SL, instances of high LL accom-
panied by low lag-SL, or vice versa (Supplementary Fig. S1). The 
discussion will address whether these scenarios are observed and 
explore their potential interpretations.

Aiming to understand better the multibrain neural dynam-
ics underlying storytelling, we first verify the herding hypothesis: 
over time, the listeners tend to cluster when they more closely 
mirror the speaker and disperse in different directions when they 
deviate from the speaker’s neural trajectory. We then use a behav-
ioral assessment of narrative engagement to illustrate that this 
herding effect is strongest for brain regions where listeners are 
most synchronized for the more compelling moments of the story.

Materials and methods
fMRI datasets
This study employed two openly accessible auditory story-
listening datasets from the “Narratives” collection (available on 
OpenNeuro: https://openneuro.org/datasets/ds002245; Nastase 
et al. 2021), namely, the “Sherlock” and “Merlin” datasets. The 
data were initially reported by Zadbood et al. (2017). The speaker 
data were obtained from a single participant across two sepa-
rate experiments. The participant viewed an ∼25-min movie in 
each experiment and was informed beforehand about a subse-
quent verbal recall task. After viewing the movie stimulus, they 
were instructed to verbally describe as many scenes as possible 
without any prompts. Voice recordings and functional magnetic 
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Figure 2. LL and SL neural pattern similarities. Full intersubject similarity matrixes (upper) where each row shows the neural pattern similarities in 
each brain region at varying lags across columns. Brain regions are ordered by their peak lags. Intersubject pattern similarities for each TR were 
averaged across all TRs in the story. Lags with the peak correlation values are color-coded. Significant peak lags are marked with wide (horizontal) 
colored bars (P < .05, FDR correction). Nonsignificant peak lags are marked with narrow colored bars. The correlation values are normalized with 
Fisher’s transformation and then z-scored across lags. Region of interest (ROI)s with significant peak lags are plotted on the brain (lower). LL 
similarities peak at lag 0 in most brain regions, reflecting that the listeners are synchronized. On the other hand, SL similarities often peak at negative 
lags, indicating that the speaker precedes the listeners.

resonance imaging (fMRI) signals were simultaneously collected 
from the speaker. The recorded spoken recall of “Sherlock” lasts 
18 min and that of “Merlin” lasts 15 min. A sample of 18 partic-
ipants (11 female participants) were recruited to listen to these 
spoken stories. Each listener was scanned with the sole task of 
focusing on the provided stimuli.

All participants reported fluency in English and were
18–40 years of age. The criteria for participant exclusion have 
been described by Zadbood et al. (2017). All participants provided 
written informed consent, and the institutional review board of 
Princeton University approved the experimental protocol.

fMRI preprocessing
fMRI data were preprocessed using FSL the FMRIB Software 
Library (https://fsl.fmrib.ox.ac.uk/), including slice time correc-
tion, volume registration, and high-pass filtering (140 s cutoff). All 
data were aligned to standard 3 × 3 × 4 mm Montreal Neurological 
Institute space (MNI152). A gray matter mask was applied. The 
first 25 and last 20 volumes of fMRI data were discarded to remove 
large signal fluctuations at the beginning and end of the time 
course to account for signal stabilization and stimulus onset/off-
set before computing intersubject dissimilarities (Nastase et al. 
2019). The time series in each voxel was mean centered before 
pattern similarity analyses. The mean responses of each ROI were 
computed at every time point for each participant and subtracted 
accordingly (Murphy et al. 2008, Garrido et al. 2013).

ROI masks
We used 238 functional ROIs defined independently by Shen et al. 
(2013) based on whole-brain parcellation of resting-state fMRI 

data. ROIs with <10 voxels based on the coverage of our BOLD 
acquisition were excluded from further analyses.

SL and LL neural similarities
We computed intersubject pattern correlations in each ROI at 
each time point of the story, i.e. TR by TR spatial pattern simi-
larities (Fig. 1), using the leave-one-participant-out method (Nas-
tase et al. 2019). For LL similarity, we computed the correlation 
between one listener’s activation pattern and the average pattern 
of the other 17 listeners. Similarly, SL similarity was computed 
between the speaker and the average pattern of 17 listeners, 
excluding each listener. It can be noted that quantifying SL cou-
pling in this way entails that SL coupling can be high while LL 
coupling is low, i.e. listeners may be widely dispersed but roughly 
centered on the speaker. We also recomputed SL coupling by first 
computing the similarities between the speaker and each listener 
and then averaging these similarities. This analysis yielded qual-
itatively similar results. According to the literature, the speaker 
and listener activation patterns are not necessarily temporally 
synchronized (Stephens et al. 2010, Dikker et al. 2014, Silbert et al. 
2014, Zadbood et al. 2017, Liu et al. 2022). Therefore, we also 
computed the neural similarities at varying lags.

The Pearson correlation was used to estimate pattern sim-
ilarity. Time-lagged neural similarities were computed by cir-
cularly shifting the time series such that the nonoverlapping 
edge of the shifted time series was concatenated to the begin-
ning or end. The resulting correlation values were normal-
ized with the Fisher’s z transformation before further statistical
analyses.
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We statistically evaluated the SL and LL neural similarities sep-
arately before examining the herding effect (Fig. 2). We generated 
surrogates with the same mean and autocorrelation as the origi-
nal time series by time shifting and time reversing the functional 
data before computing the intersubject similarities. We computed 
the correlation between the original seed and time-shifted/time-
reversed target time series. All possible time shifts were used to 
generate the null distribution. After averaging across time points 
and participants, the resulting correlation values were compiled 
into null distributions. One-tailed z-tests were applied to com-
pare neural similarities within the window of lag −10 to +10 TRs 
against this null distribution. We corrected for multiple compar-
isons across lags and ROIs by controlling the false discovery rate 
(FDR) at q < 0.05 (Benjamini and Hochberg 1995).

Computing the herding metric
We defined the herding metric as the correlation between LL neu-
ral similarity at lag 0 and SL neural similarity at lags within the 
window of −10 to −1 TRs (i.e. the speaker precedes the listeners by 
1.5–15 s). A significant herding effect indicates that the listeners 
are more synchronized when they echo the speaker’s activation 
pattern. Two statistical tests were applied.

First, to verify that only the speaker showed the herding effect, 
we replaced the actual speaker with each of the 18 listeners to 
serve as the pseudo-speaker (Supplementary Fig. S2). LL similar-
ity was computed among the remaining 17 listeners, excluding 
the pseudo-speaker, using the leave-one-out method, i.e. the cor-
relation between the activation pattern from one listener and 
the averaged pattern of all the other 16 listeners. SL similarity 
was computed between the actual speaker and the average pat-
tern of the 17 listeners. Pseudo-SL similarity was computed using 
the same method as the SL similarity, except that the pseudo-
speaker replaced the actual speaker. We computed the herding 
metric with the real and pseudo-SL similarity and compared the 
real and pseudo-herding effects using a two-sample, one-tailed t-
test (N = 18). We corrected for multiple comparisons across lags 
and ROIs by controlling the FDR at q < 0.05. Only the ROI × SL lag 
combinations that passed this test were included for the second 
statistical test.

Second, the speaker must precede the listeners to “herd” them. 
Therefore, we tested the real herding effect against correlation 
values between LL at lag 0 and SL at all the possible lags outside of 
the chosen lag window (−10 to −1 TR) using one-tailed z-tests. We 
circularly shifted the original time series to obtain a time-lagged 
time series. The number of possible lags equals the number of 
time points. The FDR method was used to control for multiple 
comparisons (ROI × SL lag; q < 0.05). Only ROIs that passed both 
statistical tests are considered to show a significant herding effect.

To quantify the amplitude of the herding effect, we extracted 
the peak LL–SL correlation value within the −10 to −1 TR SL lag 
window. We required that the peak value be larger than the abso-
lute value of any negative peak and excluded any peaks occurring 
at the edges of the window. In other words, maximum correlation 
values occurring at lag −10 or −1 TR were not recognized as peaks.

Behavioral engagement
Engagement ratings
Behavioral assessments of dynamic engagement were acquired in 
another group of participants recruited via Amazon Mechanical 
Turk. Participants with <20 unique rating scores (i.e. effectively 
flat ratings across the story) were excluded. Thirty-three raters 
were included for “Merlin” (15 females). A separate sample of 34 
raters was included for “Sherlock” (14 females). All participants 

reported fluency in English and were 25–71 years of age. All par-
ticipants provided written informed consent, and the institutional 
review board of Princeton University approved the experimental 
protocol.

The participants were instructed to indicate “how engaging the 
current event is” while listening to the stories by moving a slider 
continuously. We presented the stories and collected the data 
using the web-based tool DANTE (Dimensional Annotation Tool 
for Emotions) (https://github.com/phuselab/DANTE) (Boccignone 
et al. 2017). The rating scores were acquired with a resolution of 
0.04 s and then downsampled to 1.5 s (= 1 TR).

The engagement scores were z-scored across time, detrended, 
and averaged across raters.

Correlation between engagement and LL neural similarity
To quantify the relationship between time-point-by-time-point 
engagement ratings and LL neural similarity, we computed the 
Pearson correlation between the engagement scores and the LL 
similarity over time within ROIs, showing a significant herding 
effect (one-tailed). We corrected for multiple comparisons across 
ROIs by controlling the FDR at q < 0.05.

Correlation between the engagement effect and herding 
effect across ROIs
To quantify the relationship between engagement ratings and 
group-level herding, we computed the Pearson correlation 
between the herding effect and engagement effect across all ROIs 
(P < .05). It can be noted that since the number of ROIs is fixed, 
a significant P-value associated with this correlation does not 
indicate generalization to other regions (and does not support 
population-level inference).

Results
The herding hypothesis predicts that listeners will more closely 
cluster at moments of the story where they more accurately 
follow the speaker (Fig. 1). We quantify the distance between 
the speaker and listeners by computing the moment-by-moment 
intersubject (dis)similarity of neural activity patterns. The result-
ing time series of dynamic LL coupling and SL coupling indicate 
how tightly the listeners are clustered and aligned to the speaker, 
respectively. We calculate the SL dissimilarity at different lags 
from −15 to −1.5 s. We first verify that listener activity patterns 
echo those of the speaker with a lag of several seconds, i.e. SL 
similarities peak at negative lags (Fig. 2). We then reveal a signif-
icant herding effect in which the LL coupling correlates with the 
strength of lag-SL coupling in the default mode network (DMN) 
and language network (Fig. 3). Finally, we show higher LL coupling 
at moments of the story behaviorally reported as more engag-
ing (Fig. 4a). This effect is more robust in brain regions showing 
a higher herding effect, such as DMN (Fig. 4b), providing behav-
ioral evidence that the more “herded” brain regions are more 
synchronized by engaging story moments than the other regions.

SL and LL neural similarities: listeners follow the 
speaker’s brain activity patterns
To visualize the relationship between SL and LL neural simi-
larities, we first plot the total ROI × lag intersubject similarity 
matrices (Fig. 2). In agreement with previous studies (Stephens 
et al. 2010, Dikker et al. 2014, Silbert et al. 2014, Zadbood et al. 
2017, Liu et al. 2022), SL dynamics are markedly different from LL 
dynamics. LL similarities peak at lag 0 in most regions: listener 
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Figure 3. Cortical areas with a significant herding effect. (a) A left precuneus ROI showing a significant correlation between lag-SL and LL coupling 
over the course of “Merlin,” namely, a significant herding effect. (b) All ROIs with a significant herding effect. They are colored according to the 
amplitude of the correlation between lag-SL and LL similarity (P < .05, FDR correction). Lag-SL and LL similarities were normalized with Fisher’s 
transformation and z-scored across time before computing the herding effect.

brain activity patterns are synchronized in processing the story’s 
content. In contrast, significant SL similarities mainly occur at 
negative lags: listener activity patterns echo the speaker activity 
patterns with delays of several seconds. These second-long lags 
align with previous studies on SL coupling (Stephens et al. 2010, 
Dikker et al. 2014, Silbert et al. 2014, Zadbood et al. 2017, Liu et al. 
2022).

Herding effect: the more accurately the listeners 
follow the speaker, the more tightly the listeners 
cluster.
The herding hypothesis predicts that the more accurately the lis-
teners follow the speaker, the more closely the listeners cluster. 
We quantified the herding effect by computing the correlation 
between moment-by-moment LL coupling and lagged SL coupling 
as the narrative unfolds over time. Statistical significance for the 
herding effect was assessed using permutation procedures based 
on two surrogate datasets, one generated by replacing the speaker 
with a “pseudo-speaker” sampled from the listeners (Supplemen-
tary Fig. S2) and the other by applying unreasonable SL lags (i.e. 
the speaker precedes the listeners by >15 s or the speaker does not 
precede the listeners). Only ROIs in which the SL herding effect 
was greater for speakers rather than pseudo-speakers and with 
reasonable rather than unreasonable SL lags were deemed statis-
tically significant. Given the directionality of our hypothesis, we 
tested the herding hypothesis with one-tailed tests.

Our results reveal a significant herding effect for both stories 
in the precuneus, posterior cingulate cortex, cuneus, superior 
and middle temporal gyrus, and superior/middle occipital gyrus 
(Fig. 3); many of these regions have been implicated in represent-
ing high-level events and narrative features (Chen et al. 2017, 
Baldassano et al. 2017, 2018, Chang et al. 2021). Using lag-SL 

instead of SL at lag 0 constrains our analysis to neural patterns 
that occur first in the speaker’s brain and are observed later in the 
listeners’ brains. A significant lag-SL correlation aligns with the 
directionality of information flow from the speaker to the audi-
ence during natural communication (Fig. 2). We also compared 
the herding metrics based on SL coupling at lag 0 and found no 
significant effect (Supplementary Fig. S3). It can be noted that a 
significant herding effect does not provide evidence for a causal 
relationship between lag-SL and LL coupling.

Supplementary Fig. S4a displays an ROI with a negative cor-
relation between LL and lag-SL revealed by ad hoc two-tailed 
tests. Supplementary Fig. S5 shows an exemplar ROI with sig-
nificant LL coupling but a nonsignificant correlation between LL 
and the lag-SL herding effect. In addition, an alternative SL cou-
pling metric, in which we averaged the pattern similarity between 
the speaker and each listener instead of averaging the pattern 
similarly between the speaker and the averaged listener pattern 
(Fig. 3), revealed a similar herding effect (Supplementary Fig. S6).

More “herded” brain regions show greater LL 
similarity at engaging moments of the story
To test the hypothesis that the herding effect reflects the speaker’s 
influence on the listeners through storytelling, we examined 
whether neural alignment among the listeners (i.e. LL coupling) 
corresponds to the level of engagement evoked by the story. 
To behaviorally assess how engaging the spoken narrative was 
moment by moment, we collected continuous engagement scores 
from a separate group of listeners. In agreement with a previ-
ous study (Song et al. 2021), we found that engagement scores 
correlate with LL neural similarity; higher LL similarity occurs at 
more engaging moments of a story. In a similar vein, higher neural 
alignment has been reported for more memorable (Simony et al. 
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Figure 4. The engagement effect. (a) Brain regions where the behavioral engagement score significantly correlated with LL neural similarity (P < .05, 
FDR correction). In these regions, moments in the story with higher engagement ratings elicit higher LL neural similarity. The color bar indicates the 
magnitude of the correlation between the engagement score and LL similarity. (b) Brain regions with a stronger herding effect tend to show a stronger 
engagement effect. This finding provides behavioral evidence that the herding effect reflects how engaging listeners find the narrative.

2016), surprising (Brandman et al. 2021), and emotional moments 
during stories (Nummenmaa et al. 2014, Smirnov et al. 2019).

Among regions showing a significant herding effect, a signif-
icant engagement effect was found for both stories in the pre-
cuneus, posterior cingulate cortex, cuneus, and superior/middle 
occipital gyrus (Fig. 4a). More importantly, the engagement effect 
is more extensive in areas showing a more substantial herding 
effect (Fig. 4b). This finding provides behavioral evidence that 
the more “herded” regions are more synchronized by engaging 
moments of the story.

Discussion
This study examined the multibrain neural dynamics underlying 
storytelling. We first verified that the listeners’ neural activation 
patterns echoed the speaker’s neural activation patterns with a 
temporal lag (Fig. 2) (Stephens et al. 2010, Dikker et al. 2014, Zad-
bood et al. 2017, Zheng et al. 2018, Davidesco et al. 2023, Liu 
et al. 2022). As predicted by the herding hypothesis (Fig. 1), the 

tighter the alignment between the brain activity of each listener 
and the speaker, the more closely the listeners clustered together 
(Fig. 3). We also show that LL neural similarity increases at more 
engaging moments of the story (Fig. 4a). This engagement effect 
is more substantial in the DMN (Fig. 4b), supporting the hypoth-
esis that the “herding” effect reflects the speaker’s ability to align 
higher-order cognitive areas across listeners through engaging 
storytelling.

A significant herding effect was found in several high-order 
brain areas in the DMN, including the precuneus, middle/pos-
terior cingulate cortex, lateral parietal cortex, and right antero-
lateral temporal cortex (Fig. 3). The posterior medial regions, in 
particular, have been shown to encode paragraph-level narra-
tive structures (Lerner et al. 2011). These regions are thought to 
host content-specific, supramodal event representations (Honey 
et al. 2012, Chen et al. 2017, Baldassano et al. 2017, Yeshu-
run et al. 2017, Nguyen et al. 2019, Chang et al. 2021), link-
ing the production and comprehension of spoken narratives 
(Chen et al. 2017, Zadbood et al. 2017, Liu et al. 2022). The 
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current results add a continuous dynamic perspective to this 
body of work, suggesting that the speaker’s neural trajectory 
through high-level event features may guide the listeners’ upcom-
ing event representations with varying effectiveness throughout 
a narrative. It is crucial to acknowledge that achieving such 
multibrain dynamics may not solely depend on the content of 
external narrative stimuli but may also depend on the inter-
nal states of individual listeners and the speaker (Yeshurun et 
al. 2021). For example, previous studies have demonstrated that 
brain-to-brain coupling may vary as a function of social close-
ness (Dikker et al. 2017, Bevilacqua et al. 2019) or whether the 
speaker and the listener share similar beliefs (e.g. similar polit-
ical orientation) (Katabi et al. 2023). This dynamic convergence 
and divergence of idiosyncratic internal representations with the 
unfolding narrative would be particularly interesting for further
investigation.

A significant herding effect emerges at negative SL lags on the 
scale of several seconds (6 s on average, ranging from 3 to 12 s 
across ROIs and stories). The scale of these lags is consistent with 
that observed in previous studies on SL coupling (Stephens et al. 
2010, Dikker et al. 2014, Silbert et al. 2014, Zadbood et al. 2017, 
Liu et al. 2022), which have demonstrated that higher-level nar-
rative features and event-level representations are constructed 
over several seconds along the cortical processing hierarchy when 
listening to naturalistic narratives (Chang et al. 2022). This tem-
porally extended integrative process for narrative construction 
may yield SL lags on the order of seconds in higher-level corti-
cal areas. More broadly, the current findings add to a body of 
work suggesting that the neural activity supporting verbal com-
munication unfolds over surprisingly long timescales that likely 
reflect natural language’s slow-evolving narrative and contextual 
structures.

We do not observe a significant herding effect with SL at lag 
0 (Supplementary Fig. S3). Given that neural coupling driven by 
low-level auditory features would be expected to peak at lag 0, 
the observed lag-SL similarity seems to not be driven by auditory 
features (Fig. 2). The pseudo-speaker analyses (Supplementary 
Fig. S2)—in which we systematically substitute each listener as 
a “speaker” in turn—also affirm that the herding effect does not 
result from the speaker receiving the same auditory input as 
the listeners. Instead, the speaker uniquely leads the listeners 
through a trajectory of brain states throughout the narrative. 
Consequently, the listeners tend to cluster along the speaker’s 
path, displaying varying degrees of proximity with each other—
sometimes tightly, sometimes loosely—but consistently remain-
ing a few steps behind the speaker.

The herding hypothesis illustrates a distinct form of multibrain 
neural dynamics, in which a neural state initially arises in the 
speaker’s brain and then is reinstated in the listeners’ brains. In 
our stories, most of the time, the listeners converge to trail the 
speaker, and when they lose track, they disperse in different direc-
tions (low LL and low lag-SL; time points in the lower left quadrant 
of the scatterplot in Fig. 3a). However, there are moments where LL 
is high despite low lag-SL (time points in the upper left quadrant 
of the scatterplot in Fig. 3a, also see Supplementary Fig. S1) or LL 
is low despite relatively high lag-SL (e.g. time points in the lower 
right quadrant of the scatterplot in Fig. 3a). We speculate that in 
the former case, the listeners might share the same misunder-
standing or the speaker might not undergo the experience from 
the same perspective as the listeners (Sun et al. 2020), while in the 
latter case, the listeners might only form a loose group around the 
speaker due to ambiguous speech or heterogeneous apprehension 
(Nguyen et al. 2019).

In real-world settings, communicating effectively with audi-
ence can be a challenge, given the unique position of the speaker 
and the varying perspectives of the listeners. These differences 
will shape how the speaker and listeners move through a shared 
meaning space. Our herding framework provides a holistic way 
to quantify how well the speaker guides the audience’s brains 
through a sequence of brain states that encode the meaning the 
speaker intends to convey. However, given our limited sample size, 
we could not test whether different multibrain dynamics system-
atically relate to different subjective experiences during commu-
nication. For instance, a well-rehearsed or well-scripted speaker 
may deliver their words by rote memorization and may not fully 
engage the brain systems supporting spontaneous speech. This 
manner of speaking would display lower neural coupling with the 
audience, even if the audience exhibits good comprehension of 
the speech and robust within-group neural synchronization. By 
incorporating a more diverse range of narratives, speakers, and 
audiences, we hope that future work will provide deeper insights 
into the occurrences of communication breakdowns and how 
they manifest in the brain. Moreover, while the whole-brain cover-
age of fMRI can provide valuable insights, its practical application 
in improving real-world communication is hindered by cost, con-
strained scanning conditions, and scanning noise. Future research 
endeavors should explore alternative neuroimaging techniques 
that can better capture the dynamics in everyday communica-
tion, ideally in real-time, face-to-face interactions (Redcay and 
Schilbach 2019).

In conclusion, the efficacy of communication with an audience 
is not static in real-life situations. The audience’s level of engage-
ment fluctuates over time with their neural alignment. In this 
study, we provide an intuitive multibrain framework for captur-
ing the fluctuations in neural alignment induced by continuous 
verbal communication. We find that neural representations aris-
ing spontaneously in the speaker’s brain subsequently re-emerge 
in the listeners’ brains and that alignment among listeners coin-
cides with their alignment to the speaker’s preceding brain states. 
By incorporating moment-by-moment neural coupling among lis-
teners (LL) and between the speaker and the audience (SL), this 
study measures the extent to which a speaker shapes the multi-
brain neural network as a story unfolds, guiding the audience’s 
brains just as shepherds guide their flocks.
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