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mechanisms revealed through large
language models
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While evidence has accumulated to support the argument of shared computational mechanisms
underlying languagecomprehension betweenhumans and large languagemodels (LLMs), fewstudies
have examined this argument beyond native-speaker populations. This study examines whether and
how alignment between LLMs and human brains captures the homogeneity and heterogeneity in both
first-language (L1) and second-language (L2) readers. We recorded brain responses of L1 and L2
English readers of texts and assessed reading performance against individual difference factors. At
the group level, the two groups displayed comparable model-brain alignment in widespread regions,
with similar unique contributions from contextual embeddings. At the individual level, multiple
regressionmodels revealed the effects of linguistic abilitiesonalignment for both groups, but effects of
attentional ability and languagedominancestatus for L2 readersonly. Thesefindingsprovide evidence
that LLMs serve as cognitively plausible models in characterizing homogeneity and heterogeneity in
reading across human populations.

Language comprehension is one of themainmeans throughwhich humans
acquire world knowledge. Successful comprehension requires the under-
standing of the meanings of words within a given context1. However, it is
challenging to study word comprehension in the context of naturalistic
language comprehension,due to the absenceof explicit linguisticmodels.To
address these challenges, in this study we leverage advances in generative
artificial intelligence and large language models (LLMs) through the lens of
‘shared computational principles’ for natural language processing in
humans and machines2–7.

LLMs usemulti-layer neural network architectures and self-supervised
learning algorithms to learn the statistical structure of natural language from
large-scale text or visual corpora. These models project acquired structure
onto high-dimensional vectors, often called “contextual embeddings”,
which encapsulate linguistic nuances of individual words relevant to the
context. For example, the word ‘bank’ will be assigned different sets of
contextual embeddings to reflect its varied linguistic nuances in different
contexts (riverbank or financial institution). The principle of context-
specific embedding, a key principle shared by human brains and LLMs,
posits that preceding context is actively engaged in word comprehension

during language processes4,5. Support for this principle has documented the
superior performance of contextual embeddings in predicting brain activity
in higher-order (e.g., prefrontal and temporal cortices) and lower-order
auditory/visual regions2,4,5,8. Researchers argue that LLMs can serve as a
unified theoretical framework to shed light on the neurocomputational
mechanisms of human language comprehension.

So far, most existing neuroimaging work has applied LLMs to only L1
speakers, that is, individuals whose first/dominant language aligns with the
target language used in the task2–6. Given that more than half of the world’s
population is bilingual9, there is an urgent need to extend the development
of LLMs to the study of L2 speakers. In light of this, our study addresses two
significant gaps in the literature: (1) whether LLMs can capture the neu-
robiological mechanisms of language comprehension across L1 and L2
populations, and (2) whether LLM-derived measures can reflect individual
differences in human language processing.

In the bilingualism literature, there has been a long-standing debate
about the mechanisms underlying L1 and L2 language processes. Some
suggest thatL2 speakers cannever achievenative-like comprehensiondue to
the fundamental differences in language acquisition10,11, while others argue
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that L2 speakers can show native-like behaviors or brain responses if pro-
vided with the right learning environments12. Neuroimaging studies have
shown largely overlapping brain activation during L1 and L2 reading,
depending on the readers’ L2 proficiency, linguistic competency, and cog-
nitive abilities13–15.

Nonetheless, current neuroimaging work has several limitations. First,
traditional studies, averaging brain responses across entire reading sessions,
do not reflect the brain responses associated with the encoding of word
meanings, due to the absence of explicit linguistic models. Second, many
studies do not have a baseline group of L1 speakers against which the
comparison of L1 and L2 speakers can be evaluated. These limitations
suggest that evaluating the alignment between LLMs and the brain may
provide novel insights into the debate about language comprehension
among L1 and L2 readers. Furthermore, such cross-group comparisons can
inform the development of LLMs by testing their applicability as cognitively
plausible models across populations (Fig. 1a).

In addition, it is so far unclear to what extent individual differences
modulate the neurobiological mechanisms of language comprehension
within the framework of model-brain alignment. While the proposal of
‘shared computational principles’ hinges on the mechanisms shared by
LLMs and humans, it is agnostic to substantial variations in human lan-
guage processing. Explaining heterogeneity in human reading demands a
theoretical framework that incorporates individual differences in linguistic
and cognitive abilities1,16. Behavioral studies have documented the effects of
linguistic and cognitive abilities, such as vocabulary size and attentional
ability, on reading comprehension across L1 and L2 readers17–20. Further-
more, bilingual language processes may recruit additional cognitive
resources due to reduced automaticity and L1 interference15,18,21. Despite
ample behavioral evidence, the impacts of individual differences on the
neural mechanisms underlying L2 reading remain under-investigated.

Language experience for every L2 reader is unique and dynamic.
Neurocognitive studies suggest that language experience, such as language

Fig. 1 | Model-brain alignment and experimental procedure. a Contributions of
diverse populations and individual differences to the proposal of ‘shared compu-
tational principles’ between LLMs and human language processing. bModel-brain
alignment approach. We constructed participant-specific encoding models using
LLM-based features and computed alignment between LLMs and human brains by
correlating predicted brain responses with actual brain responses (i.e., R scores).

cExperimental procedure. During the first visit, we acquired simultaneous fMRI and
eye-tracking while participants underwent a self-paced reading task, consisting of
five expository scientific texts. Following each text, participants answered a battery of
comprehension questions. During the second visit, participants completed a battery
of behavioral tests that evaluated their linguistic competency, attentional ability, and
language experience.
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dominance, may interact with expertise in linguistic and cognitive abilities,
jointly impacting brain responses22,23. Prior neuroimaging work has docu-
mented the effects of L2 readers’ language experience during reading24.
However, how individual language experience and expertise (i.e., linguistic
and cognitive abilities) jointly affect reading comprehension remains
unclear.

While extant literature has documented individual variations in human
languageprocessing15,25, it remains largelyunknownwhether the“model-brain
alignment” approach, leveraging the power of LLMs, can capture this het-
erogeneity. To address this gap, thiswork aims toprobe intohowmodel-brain
alignment is shaped by individual differences by collecting data on readers’
linguistic abilities, cognitive abilities, and language experience (Fig. 1a).

In this study, we extend the application of LLMs to study L1 and L2
readers by testing the principle of context-specific embedding, along with the
effects of individual differences. To quantify alignment between LLMs and
human brains, we constructed LLM-based encoding models (see Fig. 1b and
“Methods”) and tested this principle by evaluating the performance of con-
textual embeddings in predicting brain responses across populations. As an
extension, we estimated the association between reading performance and
model-brain alignment, as well as the impacts of individual differences.
Toward this goal, we simultaneously recorded eye movements and brain
activityusing fMRIduringanaturalistic readingparadigm(seeFig.1c).Finally,
we assessed expertise (i.e., linguistic and cognitive abilities) andL2dominance.

Based on the proposal of ‘shared computational principles’2,4–6, we
made the following predictions: (1) humans and LLMs would show sig-
nificant alignment in distributed brain regions across L1 and L2 readers,
with contextual embeddings outperforming other linguistic features in
predicting brain responses; (2)model-brain alignment would correlate with
reading outcomes across both groups: if L1 readers exhibit better reading
outcomes, greater alignment inL1 readers comparedwithL2 readersmaybe
observed; if the two groups had comparable reading outcomes, similar
alignments would be expected; (3) linguistic abilities would impact both
groups, while attentional ability would impact more strongly L2 readers
than L1 readers; and finally (4) language experience would affect model-
brain alignment in L2 readers. Together, the model-brain alignment
approach enables us to examine the similarities and differences between L1
and L2 processing at a finer granularity and to identify the origins of
homogeneity and heterogeneity within a naturalistic reading framework.

Results
L2 and L1 readers displayed comparable reading outcomes
We used multiple-choice questions during the scanning session (first visit)
to evaluate reading comprehension performance (see “Methods”). We also
recorded the total reading time that participants spent completing the five
texts. First, we found that (a) the two groups showed comparable reading
accuracy (t(102) = 1.68, p = 0.10, d = 0.33), (b) L2 readers showed longer
total reading time (t(104) =−4.81, p < 0.001, d =−0.94), greater number of
fixations (t(104) =−2.92, p = 0.004, d =−0.57), and longer mean fixation
duration (t(104) =−4.90, p < 0.001, d = -0.96) than L1 readers. Next, we
evaluated group-level differences in behavioral assessments: (c) L2 readers
displayed lower vocabulary size (t(94) = 11.64, p < 0.001, d = 2.58) and
general reading ability (t(104) = 3.41, p < 0.001, d = 0.67), and (d) there was
no significant group difference in attentional abilities, including alerting
(t(104) =−1.40, p = 0.17, d =−0.27), executive control (t(104) = 1.33,
p = 0.19,d = 0.26), andorientingnetworks (t(104) = 0.27,p = 0.79,d = 0.05).
Details for behavioral measures were provided in Supplementary Table 2.
These findings suggest that despite longer reading times, L2 readers
achieved reading comprehension accuracy comparable to that of L1 readers.
Moreover, the linguistic abilities of L2 readers lagged behind those of L1
readers, while the two groups had comparable attentional abilities.

Contextual embeddings captured brain responses similarly in L1
and L2 readers
To test Prediction (1) that LLM-based embeddings would align with brain
responses across groups, we constructed participant-specific encoding

models using the Generative Pre-trained Transformer 2 (GPT-2) language
model26. Specifically, we quantified the model-brain alignment by extracting
contextual embeddings from the eighth layer of GPT-2, in line with previous
work7,27. Subsequently, we iteratively constructed the participant-specific
encoding model using a leave-one-run-out cross-validation approach. We
used four runs as the training sample and the remaining runas the test sample,
ensuring that each run served as the test sample once (see “Methods”). We
adopted a 1000-parcel brain atlas to partition the brain into 1000 parcels28 and
constructedtheencodingmodelontheaveragedbrainresponses for individual
parcels. Next, we selected 12 language regions of interest (ROIs) and 6 visual
ROIs (see “Methods”) to estimate ROI-based alignment.

We observed significant model-brain alignment in widespread bilat-
eral brain areas spanning visual and language in both L1 and L2 readers
(Fig. 2a). For both groups, the strongest alignment was observed in bilateral
lower-order visual regions and higher-order comprehension-related brain
regions, such as bilateral precuneus/posterior cingulate cortex (PCC; see
abbreviations in Supplementary Table 1), bilateral lateral prefrontal cortex
(LPFC), left temporal gyrus (TG), right inferior parietal lobe (IPL), and right
superior parietal lobe (SPL). In addition, the language and visual ROIs
displayed significant alignments (Fig. 2d). There was no significant group
difference in the whole-brain and ROI-based alignment (Fig. 2b–d), sug-
gesting that brain responses were equally captured by contextual embed-
dings between the two groups.

Thesefindings support Prediction (1) andprovide neural evidence that
LLM-based embeddings capture brain responses similarly across L1 and L2
readers during naturalistic reading. The comparable alignment across L1
and L2 readers, particularly in higher-order comprehension-related and
lower-order visual regions, demonstrates that LLMs can be effectively
extended to the study of L2 readers.

Models embedded with context-specific meaning showed the
best model-brain alignment across L1 and L2 readers
To further test prediction (1), we examined the superiority of contextual
embeddings in predicting brain responses over other linguistic features,
such as part-of-speech (POS) labels that indicate a word’s grammatical role
vs static embeddings that represent words with fixed high-dimensional
vectors independent of context. Specifically, we compared a model con-
structed using contextual embeddings (i.e., Rcontextual; as reported in Fig. 2a)
with (a) a model constructed using both contextual embeddings and POS
labels (i.e.,Rcontextual_POS) and (b) amodel constructedusingboth contextual
and static embeddings (i.e., Rcontextual_static). We extracted POS labels by
assigning a one-hot vector of 11 features to individual words (see “Meth-
ods”). These labels do not convey the conceptual meaning but indicate the
grammatical role. We extracted static embeddings from the word token
embedding matrix of GPT-2 to represent the context-independent state of
word representations. Unlike contextual embeddings, static embeddings
capture the ‘average’meaning of words independent of specific contexts.

Our analyses indicated comparable model-brain alignment between
the model including contextual embeddings and the model consisting of
contextual and POS labels for both groups (ps > 0.001; see the non-
thresholded whole-brain differences in Fig. 3a). Similarly, there was no
significant difference in model-brain alignment between the model
including contextual embeddings and the model consisting of contextual
and static embeddings for bothgroups, except for a significant parcel labeled
PCC in L1 readers (ps > 0.001; see the non-thresholded whole-brain dif-
ferences in Fig. 3b).

To reflect the reliance on contextual information, we further estimated
themodel-brain alignment uniquely contributed by contextual embeddings
(Runique; see “Methods”).We identified that both L1 and L2 readers showed
model-brain alignment (i.e.,Runique > 0) uniquely contributed by contextual
embeddings in frontoparietal and frontotemporal brain regions (i.e., ps <
0.001; Fig. 3c), such as bilateral precuneus/PCC, IPS, PFCl, SPL, IFG, and
visual regions. In addition, we identified comparableRunique betweenL1 and
L2 readers (i.e., ps > 0.001; see the non-thresholded whole-brain differences
in Fig. 3d).
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These findings convergently reinforce the superiority of contextual
embeddings in predicting brain responses across populations and highlight
their unique contribution beyond other features, demonstrating the
homogeneity of LLMs in modeling brains across populations.

Model-brain alignment predicts reading accuracy across
readers
To test prediction (2) that greater model-brain alignment would be asso-
ciated with better comprehension, we correlated reading accuracy with
alignment in ROIs. This analysis hinges on the premises that (a) LLM
representations correctly capture the meanings of the text and (b) humans
comprehend themeaningsof the text. Specifically,weperformedcorrelation
analyses in language and visual ROIs. We concatenated model-brain
alignment and reading accuracy of the two groups, due to no group dif-
ferences in both measures (Fig. 2d).

We found positive correlations between reading accuracy and align-
ment in bilateral language ROIs (Fig. 4a), including the left inferior frontal
gyrus (IFG; r = 0.23, p = 0.03), left angular gyrus (AG; r = 0.33, p = 0.003),

right anterior temporal gyrus (ATG; r = 0.22, p = 0.03), bilateral middle
frontal gyrus (MFG; left: r = 0.24, p = 0.03; right: r = 0.26, p = 0.03),
and bilateral posterior temporal gyrus (PTG; left: r = 0.36, p = 0.002;
right: r = 0.21, p = 0.04). In contrast, none of the visual ROIs exhib-
ited significant correlations between model-brain alignment and
reading accuracy (Fig. 4a; ps > 0.1). These findings suggest that the
better the reading outcome, the stronger the model-brain alignment
in the language areas.

Furthermore, we built linear regression models using the leave-
one-run-out cross-validation approach to predict reading accuracy
from model-brain alignment, and then correlated the predicted with
actual reading accuracy scores. This model predicted reading score in
left-out subjects in the left PTG (r = 0.30, p = 0.02) and AG (r = 0.27,
p = 0.03; see Fig. 4B). Together, these findings suggest (a) there is a
tight association between reading outcomes and model-brain align-
ment, (b) this association only occurs for the language ROIs, and (c)
alignment in the key left-hemisphere language regions predicts
reading outcomes.

Fig. 2 | Model-brain alignment. aWhole-brain model-brain alignment. L1 and L2
readers both showed significant alignment in widespread brain regions. b Group
differences inmodel-brain alignment. Parcels in red indicate greater alignment in L1
readers, but parcels in blue indicate greater alignment in L2 readers. c Statistical
significance of group difference in alignment. d ROI-based model-brain alignment.

The left and right panels show the alignment in language and visual regions,
respectively. Note: the left and right brain regions were marked with ‘l-’ and ‘r-’
respectively; see a list of abbreviations in Supplementary Table 1; error bars indicate
95% CI.
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Impact of expertise on model-brain alignment differed between
L1 and L2 readers
To assess the impact of individual differences on model-brain alignment as
outlined in Prediction (3), we constructed regression-based models to
predict alignment in language ROIs with ‘expertise’ as the predictor for L1
and L2 readers, separately. We call this predictor ‘expertise’ as it includes
linguistic and attentional abilities of the learner22. We included vocabulary
size and general reading ability in the first regression model (referred to as
the ‘Ling model’), given the effects of linguistic abilities addressed by earlier
work1,16.

This model was predictive of alignment between LLMs and L1 readers
in the left language regions comprising the orbital part of IFG (IFGorb), IFG,
MFG, and PTG (ps ≤ 0.05; Fig. 5a and Supplementary Table 4). Specifically,
vocabulary size positively predicted model-brain alignment in the left IFG
(Fig. 5b), IFGorb, and MFG. In addition, as general reading ability
improved, the effect of vocabulary size on alignment improved, including

the IFGorb, IFG, MFG, and PTG. By contrast, the Ling model did not
significantly predict model-brain alignment for L2 readers.

The second regression model included linguistic and attentional abil-
ities as predictors (referred to as the ‘LingANT model’). Interestingly, the
LingANTmodel was not predictive of the alignment between LLMs and L1
readers (ps > 0.10). By contrast, theLingANTmodel, including the linguistic
and alerting abilities, significantly predicted the alignment between LLMs
and L2 readers in the left IFG, MFG, anterior TG (ATG), and PTG (ps ≤
0.055; Fig. 5c and Supplementary Table 5). In particular, better alerting and
general reading abilities positively predicted greater alignment in those
regions (Fig. 5d). In addition, as vocabulary size increased, the prediction of
general reading ability on the alignment decreased in the left IFG, ATG, and
PTG (Supplementary Table 5 and Supplementary Fig. 1a, b). Furthermore,
the LingANTmodel, consisting of linguistic and executive control abilities,
predicted alignmentbetweenLLMsandL2 readers in the leftMFG(p < 0.05;
Fig. 5c and Supplementary Table 5). Better executive control and general

Fig. 3 | Advantages of contextual embeddings in predicting model-brain align-
ment. aDifferences inmodel-brain alignment betweenRcontextual and Rcontextual_POS.
Parcels in red indicate greater Rcontextual, while parcels in blue indicate greater
Rcontextual_POS. No significant differences were observed between Rcontextual and
Rcontextual_POS. b Differences in model-brain alignment between Rcontextual and
Rcontextual_static. Parcels in red indicate greater Rcontextual, while parcels in blue

indicate greater Rcontextual_static. No widespread differences were observed between
Rcontextual and Rcontextual_static. cUnique contribution of contextual embeddings. The
unique contribution of contextual embeddings was significant across L1 and L2
readers. d Group differences in the unique contribution of contextual embeddings.
The unique contributions of contextual embeddings were comparable between L1
and L2 readers.
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reading abilities positively predicted greater alignment, while vocabulary
size negatively predicted alignment. In addition, the effect of executive
control ability on alignment increased as vocabulary size increased (Sup-
plementary Table 5 and Supplementary Fig. 1c).

Our findings demonstrate a population-general role of linguistic
abilities in shaping model-brain alignment during naturalistic read-
ing, but a population-specific contribution of attentional abilities
among L2 readers.

Interplay between language dominance and expertise in L2
readers
Following existing neurocognitive theories of bilingual language
processing22,23,29, we extended our analysis by testing the effect of language
experience in L2 readers. Among these experience factors, language dom-
inance—which quantifies the dominance of language use in real-life activ-
ities—exerts significant effects on the structure and function of brain
regions23. To examine the impact of multifaceted individual differences on
themodel-brain alignment, we developed a regressionmodel (referred to as
the ‘full model’) that incorporated the same expertise factors as predictors
(i.e., vocabulary size, general reading ability, and attentional ability), plus the
factor ‘language dominance score’ (the degree to which English is the
dominant language in real-life reading) derived from the Language history
questionnaire (LHQ 2.0)30.

Our analyses indicated that this model was predictive of alignment
between LLMs and L2 readers in the left IFG, MFG, and PTG (ps ≤ 0.05;
Fig. 6a and Supplementary Table 6). Specifically, we observed significant
interaction effects between vocabulary size and language dominance and
between alerting ability and language dominance (Fig. 6b): the prediction of
language dominance on alignment in the left IFG decreased as vocabulary
size increased, and on alignment in the leftMFG and PTG also decreased as
alerting ability increased. In linewith the LingANTmodel for L2 readers, we
identified the effects of general reading and alerting abilities on the align-
ment in the left IFG and MFG. Together, these findings demonstrate the
modulation of language dominance during L2 reading, highlighting the
heterogeneity in brain responses among L2 readers driven by language
experience.

Discussion
How does the alignment between LLMs and human brains serve to study
reading across diverse populations? This work provides neural evidence for
both the homogeneity and heterogeneity in model-brain alignment during
naturalistic reading. LLM-based contextual embeddings showed compar-
able performance in predicting brain activity between L1 and L2 readers,
suggesting homogeneity in alignment across populations. Concurrently,
model-brain alignment was modulated by individual differences in exper-
tise and language experience, reflecting the heterogeneity in alignment

Fig. 4 | Association between reading accuracy and model-brain alignment.
a Correlation between reading accuracy and model-brain alignment. Reading
accuracy positively correlated with model-brain alignment in language ROIs using
contextual embeddings. b Correlation between predicted and actual reading

accuracy concatenated across L1 and L2 readers. Predictions of reading accuracy in
the left PTGandAGpositively correlatedwith actual reading accuracy. Note: left and
right brain regions are labeled with ‘l-’ and ‘r-’, respectively; see a list of abbreviations
in Supplementary Table 1; *p < 0.05.
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Fig. 5 | Ling and LingANT models for predicting model-brain alignment in L1
and L2 readers. a Prediction of model-brain alignment in L1 readers. The adjusted
R2was significant ormarginally significant (ps ≤ 0.050) in the left IFGorb, IFG,MFG,
and PTG. b Effect of vocabulary size. c Prediction of model-brain alignment in L2
readers. The adjusted R2 was significant or marginally significant (ps ≤ 0.055) in the

left IFG, MFG, ATG, and PTG. Bars in muted teal represent the model including
linguistic and alerting abilities, while the bar in deep teal represents the model
including linguistic and executive control abilities. d Effects of general reading and
attentional abilities. We inverted the sign of alerting and executive control scores for
visualization. Note. GR = General reading ability; *p ≤ 0.050; 0.050 < +p ≤ 0.055.

Fig. 6 | Full model for predicting model-brain alignment in L2 readers.
a Prediction of model-brain alignment in L2 readers. Full model, compared to the
Ling or LingANT models, displayed the greatest adjusted R2 in the left IFG, MFG,
andPTG. b Interaction effects. The effect of language dominance on themodel-brain

alignment in the left IFG and MFG decreased as vocabulary size (left) or alerting
ability (right) increased. We inverted the sign of alerting scores for visualization.
Note. *p ≤ 0.050; 0.050 < +p ≤ 0.055.
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between LLMs and human reading. Together, our work provides compel-
ling evidence for the applicability of LLMs in studying the homogeneity and
heterogeneity in human language processes.

While the encoding of contextual information is crucial for language
comprehension, it is challenging for traditional neurocognitive work to
identify related brain activity due to the absence of an explicit linguistic
model. In this regard, recent neurocomputational work has advocated that
the principle of context-specific embeddings based on LLMs can be applied
to study human language processing using the model-brain alignment
approach2,4,7,27. Aligning with these studies, we found that contextual
embeddings predicted brain responses in widespread brain regions during
reading. This is not unexpected given that LLMs are trained on a massive
amount of text corpora to learn rich linguistic structures of human
language31, enabling contextual embeddings to encapsulate contextual
information andwordmeanings. However, our work further contributes to
theunderstandingof this principle by extending thepotential of LLMs to the
comparison of L1 and L2 readers within the model-brain alignment
approach and by incorporating individual variations.

Our study found comparable alignment between models, including
contextual embeddings alone and those combining them with additional
features, indicating the unique contribution of contextual embeddings in
predictinghumanbrains during reading.Unlike static embeddings andPOS
labels, contextual embeddings encode context-level conceptual meanings32.
This high-level process is fundamental for discourse comprehension, as it
reflects the interplay between preceding context and current words4.
Notably, contextual embeddings predict brain responses across diverse
brain networks, such as default mode, language, frontoparietal, and visual
networks. Prior reviews demonstrate that these networks are involved in
various linguistic processes during discourse comprehension14,33,34. Our
findings, using the model-brain alignment approach, underscore that these
brain networks are tuned to context-level conceptual information during
naturalistic reading across groups.

Furthermore, our study identified comparable contributions of con-
textual embeddings between L1 and L2 readers, reflecting that both groups
similarly relied on contextual information. Coincidentally, using an LLM-
derived surprisal measure, a recent study reported the emergence of a sur-
prisal effect across L1 and L2 readers during naturalistic reading, reflecting
similar predictive/integrative processes across the two groups35. Notably,
our work used pre-trainedEnglish data (GPT-2), and the native language of
L2 readers in this study is Mandarin. Yet, when L2 readers read in English,
the LLM-based model using English data could capture their brain
responses equally well as it did for L1 readers. Given comparable reading
achievement across groups, these findings suggest that the association
betweenmodels and humansmay dependmore on comprehension success
than on language background. Supporting this argument, we found that
model-brain alignment did not predict whether a reader was L1 or L2 (see
Supplementary Note 2 and Supplementary Fig. 2). Collectively, these
findings highlight the potential of LLMs as cognitively plausible models for
studying naturalistic language processing and offer methodological insight
for cross-linguistic work without bias toward language background.

However, in contrast to comparable model-brain alignment between
L1 and L2 readers, the univariate brain activation analysis identified dif-
ferential brain activations between the two groups (see SupplementaryNote
1 and Supplementary Fig. 3). Specifically, we found greater activations in
bilateral cuneus and calcarine for L1 readers but greater activations in the
right IOG and left precuneus for L2 readers. This discrepancy may arise
from the differences in approaches. Traditional neuroimaging work aver-
aged brain responses throughout the course of reading, potentially collap-
sing word-by-word linguistic nuances. By contrast, the model-brain
alignment approach pinpoints brain responses associated with explicit
linguistic models. Consequently, it prompts us to ask how we can use the
LLM-based approach to study human language as a complement to tradi-
tional approaches36–38.

Furthermore, comprehension achievement was associated with model-
brain alignment in higher-order language regions but not in lower-order

visual regions. These language regions are implicated in diverse linguistic
processes crucial for discourse comprehension, such as inference processing
or coherence making33,39,40. Specifically, the left IFG plays a key role in the
unification system of language comprehension40, which involves integrating
linguistic elements. The selected visual regions (e.g., IOG and LG) are known
to be engaged in letter identification and pre-lexical processing41,42, and they
may interact with the left IFG to function as part of the ventral lexical-
semantic pathway during naturalistic reading43,44. In addition, the left IFG is
engaged in syntactic and semantic unification by interacting with other
higher-order language regions such as PTGandAG40. Together, our findings
provide direct evidence of the engagement of these language regions in the
encoding of contextual information. In light of the interactive nature of the
neurocognitive system underlying language processing, future research
should examine how various brain regions interact to contribute to language
comprehension within the model-brain alignment framework.

A key contribution of our work is our finding that considerable var-
iations in the correspondence between LLMs and human brains indicate
that ‘shared computational principles’ may depend on the expertise and
experience of individual language users. In line with recent work reporting
the mediation of L2 proficiency on the surprisal effect35, we found that
linguistic abilities influence model-brain alignment in language regions
among L2 readers. We also identified similar effects among L1 readers,
aligning with prior behavioral studies1,15,16. Complementing previous neu-
roimaging work, our study provides the first neural evidence, within the
model-brain alignment framework, for a population-general role of lin-
guistic abilities in reading comprehension across both L1 and L2 readers.
These findings further demonstrate the heterogeneity in model-brain
alignment and its association with linguistic processes, contributing to the
refinement of the proposal of ‘shared computational principles’.

Our study also discovered an additional role of attentional abilities in
predicting model-brain alignment for L2 readers but not L1 readers. These
attentional networks, involving the allocation of attentional resources for
sustained vigilance and conflict resolution, are associated with discourse
comprehension45–47. The differential roles of the attentional networks may
reflect distinct attentional demands on readingbetween the two groups. The
Flesch-Kincaid Grade Level of the texts used in this work ranged from sixth
to eighth grade, likely requiring less demanding cognitive resources fromL1
readers. Previous work found the effects of cognitive skills on structural
neuroplasticity under the cognitivelydemanding learning condition, butnot
in the less demanding condition48. Similarly, less challenging attentional
requirements may diminish the effects of attentional networks on L1
readers.

In contrast, L2 readers have heightened demands on cognitive pro-
cesses due to less automatic linguistic processes15,18,19. The compensatory
mechanism proposes that increased cognitive demands can enhance L2
comprehension by devoting additional cognitive resources49,50. Similarly,
neurocognitive meta-analyses have shown greater activations in brain
regions (e.g., IPL, IFG, and MFG) implicated in language control in L2
reading than in L1 reading13,14. Therefore, the additional role of attentional
ability prompts us to conclude that, relative to L1 readers, it is more chal-
lenging for L2 readers to achieve successful reading. This conclusion is
substantiated by the findings of longer reading time, greater number of
fixations, and longer mean fixation durations among L2 readers. Thus, the
population-specific effect of attentional abilities for L2 readers highlights the
importance of individual differences when using LLMs to study naturalistic
language comprehension.

To what extent do language experiences modulate the neurocognitive
patterns of bilingual speakers? In our study, we identified the impact of L2
dominance on alignment. In particular, language dominance impacted the
alignment by interacting with linguistic and attentional abilities. Unlike
prior work that shows the effect of language experience alone on brain
functions24,51, this study focuses on the joint contribution of language
experience and expertise. The interaction effect suggests that L2 readers in
our study who scored low on expertise could compensate for their low
abilities when having greater language dominance, aligning with the
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compensatorymechanism49,50. This interpretation is also consistentwith the
proposal that language experience shapes brain architectures and increases
the efficiencies of linguistic and cognitive processes23,29. These findings
highlight the significance of language experience for L2 readers using the
model-brain alignment approach.

This work has several limitations. First, we only used GPT-2, a widely
used transformer-based model, but variations in model architecture may
lead to distinct patterns of model-brain associations. A recent study35

reported that the surprisal measure, derived from a model capturing the
hierarchical structures, was the best predictor of N400 for L2 readers. By
contrast, for L1 readers, brain responses were best predicted by the surprisal
measure derived from the transformer model encapsulating semantic
associations betweenwords.While the comparisonof different LLMmodels
could be further pursued, such work is out of this study’s scope, requiring
more resources and time to complete in future studies. Second, in line with
previous model-brain alignment work using fMRI data2,27, the overall
model-brain alignment is not high. Notably, naturalistic language com-
prehension involves complex linguistic and cognitive processes, but LLM-
based contextual embeddings pinpoint brain responses associated with the
encoding of contextual information. Mapping brain signals, acquired over
time and space, to high temporal resolution LLM-based metrics is a novel
approach, but is still at its early stage of development. In addition, variation
inmodel architecturemay lead to differentmodel-brain alignment patterns.
To address these challenges, more sophisticated LLMs and enhanced
methods for data acquisition are warranted to reflect the nuanced processes
involved in human language processing. Finally, other domain-general
executive functions may differentially influence language processing
between L1 and L2 readers. For example,workingmemory updating plays a
critical role in discourse comprehension52 and in the development of the
bilingual language system53. Future investigations are needed to fully
understand the impact of domain-general executive functions on the
alignment between LLMs and L2 processing.

To conclude, our work is the first systematic application of the neuro-
computational approach to investigate the neurocomputationalmechanism
underlying naturalistic reading in both L1 and L2 readers, along with the
examination of the impacts of individual differences. Thiswork is consistent
withrecent calls to integrate cognitive, computational, andneuroscienceper-
spectivestostudycognitionandlanguage8,54.Itisimportanttonotethatdespite
novel insights intohumanlanguageprocessing,LLMsasaunifiedmodelhave
limitations in fully accounting for howhuman brains process language.One
important direction for future research is to harness interdisciplinary
approachesacrosscognitiveneuroscienceandnatural languageprocessingto
enhance the cognitive plausibility of LLMs in capturing human language
processing, including itsuse inreal-worldcontexts.

Methods
Participants
Fifty-two native English speakers (L1 readers; 24 males; mean
age ± SD = 22.85 ± 4.66) and fifty-six Chinese-speaking learners of English
(L2 readers; 26males; mean age ± SD = 25.14 ± 4.74) were recruited. All L2
readers were required to pass the Chinese English Test 6 (CET6). Partici-
pants in both groups were right-handed with normal or corrected normal
vision and had no history ofmental or neurological disorders. This research
was approved by the Pennsylvania State University Institutional Review
Board (IRB; Study ID: STUDY00002823) and followed ethical standards.
Written informed consent was obtained from all participants before the
experiments. Half of the L2 readers were recruited from Pennsylvania State
University, and the other half were recruited from Beijing Normal Uni-
versity andPekingUniversity.WeexcludedoneL1 reader andoneL2 reader
due tomissing eyemovementdata. Eventually, thiswork included51L1 and
55 L2 readers.

Stimuli
Five short expository texts about STEM content, adopted from a previous
study55, were presented to participants in theMRI scanner. The topics of the

texts include Mars, Supertanker, Math, Global Positioning System (GPS),
and Electric Circuit. Text characteristics (e.g., the length of texts and mean
word count per sentence; see Supplementary Table 3) and psychological
variables of lexical properties (e.g., age of acquisition, familiarity for content
words, word frequency, and Coh-Metrix measurements) in the five texts
were both controlled.

Behavioral measurements
We assessed the general reading ability of each participant using the Gray
Silent Reading Test (GSRT)56, comprising 13 narrative tests. Each narrative
was presented to participants, along with five multiple-choice questions, to
assess reading comprehension. The test started with the 8th narrative (i.e.,
middle-level difficulty), and was conducted downward until the basal (i.e.,
all questions were answered correctly) was reached, and upward until the
ceiling (i.e., three out of five answers were wrong) was reached. The total
number of correct questionswas counted as the raw score, ranging from0 to
65. We converted the raw score into standardized quotient scores and
percentile ranks following the formulas. This test has been normed on a
sample of 1,400 individuals, with reliability coefficients alpha at or above
0.97. Following previous work57, we adopted the percentile rank to reflect
general reading ability. Two L1 readers were excluded when the analysis
involving general reading ability due to missing data.

We assessed English receptive vocabulary size using the Peabody
Picture Vocabulary Test (PPVT IV)58, consisting of 228 items distributed
across 19 item sets. For each item, a word was aurally presented, accom-
panied by four pictures on the screen. Participants were required to select a
picture matching the meaning of the word. This test was administered
downward until the basal set (i.e., until only one or zero errors within the
item set) was reached, and upward until the ceiling set (i.e., eight or more
errors within the item set) was reached. Participants obtained one score for
each correct item, so the total score ranges from 0 to 228. Twelve L1 readers
were excluded when the analysis involving vocabulary size due to
missing data.

We used the attentional network test (ANT)59,60, to assess domain-
general cognitive abilities in three attention networks, including the alerting
network, the orienting network, and the executive control network. For each
trial, a central arrow was presented with congruent or incongruent flanking
arrows accompanied by attentional and/or spatial cues. Participants were
required to indicate the direction of central arrows as fast and accurately as
possible. Following previous work59,61, the alerting network score was cal-
culated by subtracting the mean reaction time (RT) of the double-cue
condition from that of the no-cue condition. The orienting network score
was derived by subtracting the mean RT of the spatial-cue condition from
that of the central-cue condition. The executive control network score was
obtained by subtracting the mean RT of the congruent flanker condition
from that of the incongruent flanker condition. We only included correct
trials for both conditions. A smaller value indicates greater attentional
network scores. Two L1 readers were excluded from the analyses involving
attentional ability due to missing data.

We used LHQ 2.0 to measure language dominance30, one of the
important experience measurements23,29. This measure quantifies how
dominant a language is in daily life. Since this work investigates reading
comprehension, we computed the language dominance score relevant to
reading activities, following the formula proposed by a recent work62. A
greater value indicates that the target language ismore dominant in real-life
reading. Two L2 readers were excluded from the analysis using language
dominance because their data were either missing or inaccurate.

MRI task procedure and image acquisition
Weused the fixation-related fMRI paradigm63 to simultaneously record eye
movements and BOLD signals while participants performed the self-paced
reading task in the MRI scanner (Fig. 1c). Each text was presented on the
screen sentence by sentence, and the maximum duration of each sentence
was 8 s. Participants pressed the button to proceed to the next sentence once
they finished the current sentence. Ten multiple-choice comprehension
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questions were used to assess reading performance at the end of the text. In
total, each participant completed five runs containing one text for each run,
and the order of texts was randomized across participants.

3-T Siemens scanner with a 64-channel phased array coil was used to
acquire T1-weighted, T2* weighted, and Diffusion tensor images. T1

weighted images employed MPRAGE sequence (TR = 1540ms;
TE = 2.34ms; flip angle = 9°; GRAPPA in-plane acceleration factor = 2;
voxel size = 1mm× 1mm× 1mm; acquisition time = 216 s), covering
cerebrum, cerebellum, and brain stem. Functional runs of T2* weighted
images utilized the echo-planar sequence (TR = 400ms; TE = 30ms; flip
angle = 35°; voxel size = 3mm× 3mm× 4mm; acquisition time varied
based on reading speed). To correct for distortions caused by themultiband
acquisition, a pair of echo-planar spin-echo sequence images (A/P and P/A
phase encoding direction) were acquired (TR = 3000ms; TE = 51.2ms; flip
angle = 90°; voxel size = 3mm× 3mm× 4mm)64.

Eye-tracking data acquisition
The Eye-Link 1000 Plus long-range mount MRI-compatible eye tracker
(SR-Research) was used to record eye movements monocularly (from the
right eye). Detailed parameters are as follows: sampling rate = 1000HZ;
distance between the camera and the participants’ eyes = 120 cm; mean
word length on the screen = 3.08 cm; average distance between
words = 0.95 cm; On average, a reader’s visual angle when fixating on a
word is 1°14¢. Before the experiment and each run, a 13-point calibration
routine was employed.

Reading performance
We assessed reading comprehension achievement using reading accuracy
(ACC).ACCwas quantifiedby the proportion of questions that participants
correctly answered after reading each text. In total, there were 50 questions
for all five texts. Four L2 readers were excluded from the analysis involving
ACC because their responses to several questions were missing. We mea-
sured the average total reading time for each participant across five texts. In
addition, we quantified the number of fixations andmean fixation duration
per participant. We performed two-sample t-tests to examine group dif-
ferences in ACC and eye-movement measures.

fMRI data preprocessing
SPM12 (https://www.fil.ion.ucl.ac.uk/spm/software/spm12/, Wellcome
Department of Cognitive Neurology, United Kingdom) and fsl-5.0.11
(https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FslInstallation#Installing_FSL) were
adopted for preprocessing, including slice-time correction, voxel displace-
ment map calculation, realignment & unwrapping (motion and distortion
correction), co-registration, segmentation, normalization, and smoothing.
Head motion during realignment was measured by three translational and
three rotational parameters. The average framewise displacement (FD) for
five runs was estimated65. No participant exceeded the exclusion criterion
(FD > 2.5mm). We used unsmoothed functional images to implement
confound regression with the Nilearn Python library (http://nilearn.github.
io). We included six head movement parameters and three physiological
regressors (i.e.,WM,CSF, and ventricular CSF) as confound regressors, and
applied a high-passfilterwith a cut-off of 100 s to remove the low-frequency
signals. These preprocessed images were used for the subsequent model-
brain alignment analysis.

ROI-based analyses
For the ROI-based analyses, we selected language regions as ROIs from a
predefined language mask66, including bilateral IFGorb, IFG, MFG, ATG,
PTG, andAG (Supplementary Fig. 4a). Additionally, we usedNeurosynth67

to generate a reading mask with the search term ‘reading’ through an
automated meta-analysis of 521 “reading” related studies. Next, we chose
the peak coordinates of clusters in the occipital cortex with more than 50
contiguous voxels to generate 10-mm sphere visual ROIs. Lastly, we flipped
these visual ROIs to obtain bilateral regions akin to language ROIs,
including bilateral IOG, LG, and cuneus (Supplementary Fig. 4b).

Embeddings extracted from LLMs
Weextracted contextual embeddings from theGPT-2model26, a recognized
transformer-based model applied in recent work2–4. GPT-2 uses a multi-
layer self-supervised mechanism to acquire linguistic structure during
natural language processing. Each successive layer processes the output
from the preceding layer, dynamically generating embeddings of the input.
Previous work1,2 has shown the best performance of GPT-2with themiddle
layers, like the eighth layer, so this work derived contextual embeddings
from the eighth layer. In addition, we extracted static embeddings from
GPT-2, capturing the “average” meaning of that word independent of
contexts. These embeddings are produced when the input layer converts
tokenized text into vectors,which are thenprocessedby subsequent layers of
self-attention. The following procedure was used to extract the embeddings:
(1) all five texts were individually tokenized using the tokenizer provided by
HuggingFace; (2) the tokens of each text were used as the language input to
run the GPT-2model; (3) the embeddings of all tokens were extracted from
themodel, resulting in a 768-dimensional vector for each token; and (4) the
embeddings of all tokens from a word were averaged. Finally, the GPT-2
model generated a 768-dimensional vector for each word.

Model-brain alignment
Following prior work2,6, we constructed encoding models to estimate the
alignment between brain responses and LLM-based metrics (e.g., contextual
embeddings). To do so, we adopted a leave-one-run-out cross-validation
approach, using four of thefive runs as the training sample and the remaining
run as the test sample. This procedure was iteratively performed five times,
ensuring imagingdataofeachrunservedas the test sampleonce.Next,webuilt
a linear ridge regression model to predict brain responses on the training
sample using LLM-basedmetrics. Given the trained encodingmodel, we then
predicted brain responses for the test sample (i.e., the left-out run) and com-
puted the Pearson correlation between predicted and actual brain responses.
Lastly, we averaged the correlation coefficients derived from each cross-
validation fold to determine the model-brain alignment for each participant.

In line with previous work2,6, we adopted a finite impulse response
(FIR) model with five delays to construct the linear ridge regression model,
consisting of 0, 5, 10, 15, and 20 time points corresponding to 0 s, 2 s, 4 s, 6 s,
and8 s.Toalign language stimuliwith continuous imagingdata,we adopted
a downsampling approach as proposed by prior work2,3,6. Specifically,
individual eye fixations were registered to each repetition time (TR) of the
imaging data. This registration resulted in each TR containing a varying
number of words, ranging from 0 to 4 for both L1 and L2 readers. Tomatch
the sampling frequency between brain responses and embeddings, we
averaged the embeddings of all words within the same TR. However, no
attempt was made to match the actual number of words within each TR,
given the variability that may exist across readers. We implemented scikit-
learn to z-score brain responses and embeddings before running the
regression model, and adopted L2-penalized linear regression using Rid-
geCVfromtheHimalayaPython library68 tobuild the regressionmodel.The
regularization coefficients (i.e., L2 penalty terms) of RidgeCV were selected
with nested leave-one-run-out cross-validation from 11 log-spaced values
ranging from 10−1 to 109 for each training fold.

We used a 1000-parcel brain atlas to partition the brain into 1000
parcels28 and estimated the model-brain alignment for each parcel by
implementing the parcel-wise encoding model. We also quantified model-
brain alignment in language and visual ROIs by constructing the voxel-wise
encoding model. In line with recent work2, we performed a two-sided
Wilcoxon rank-sum test to evaluate the significance of model-brain align-
ment within individual groups. In addition, we conducted a
Mann–WhitneyU-test to comparemodel-brain alignment between groups.
To correct for the multiple comparisons, we applied a strict threshold
(q < 0.001, Bonferroni corrected).

Model-brain alignment specific to contextual information
To demonstrate the advantage of contextual embeddings in predicting
human brain responses over other features, we compared the model
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including contextual embeddings (Rcontextual) with (a) the model incor-
porating contextual embeddings and POS labels (Rcontextual_POS) and (b) the
model incorporating contextual and static embeddings (Rcontextual_static). To
do so, we used the NLTK Python package to assign individual words a one-
hot vector of 11 categories, representing POS features including noun, verb,
proper noun, past tense verb, present participle, base verb, adjective, adverb,
determiner, coordinating conjunction, and preposition/subordinating
conjunction. In addition, we derived static embeddings from the non-
contextual word token embedding matrix generated by the GPT-2 model.

To estimate the model-brain alignment uniquely contributed by
contextual embeddings, following recent work32, we established the full
encoding model by concatenating all features, including contextual
embeddings, static embeddings, and POS labels. Next, we constructed the
partial encoding model by excluding contextual embeddings. Finally, we
subtracted the model-brain alignment derived from the partial model
(Rstatic_pos) from that derived from the fullmodel (Rfull) to obtain the unique
model-brain alignment predicted by contextual embeddings (Runique).

We conducted two-sidedWilcoxon rank-sum tests to comparemodel-
brain alignment between models and the significance of Runique for each
group, respectively. Furthermore, we implementedMann–WhitneyU-tests
to compare whether Runique would differ between L1 and L2 readers. To
correct for multiple comparisons, we applied a strict threshold (q < .001,
Bonferroni corrected).

Association between reading performance and model-brain
alignment
To reveal the association between reading achievement and model-brain
alignment in language and visual ROIs, we conducted the correlation
analyses for L1 and L2 readers, separately. Next, we concatenated the
alignment and reading accuracy of the two groups, due to no significant
group differences in accuracy or model-brain alignment. Four L2 readers
were excluded fromthis analysis because their responses to several questions
were missing. To correct for multiple comparisons, we applied FDR cor-
rection (q < 0.05) for ROIs from the same brain network.

Further, we established linear regression models using the Sklearn
Python Library to predict reading accuracy using model-brain alignment
when significant correlationswere shown in the above analyses.Todo so,we
applied the leave-one-run-out cross-validation approach and Pearson
correlation to evaluate model performance. We applied FDR correction
(q < 0.05), and reported the corrected significance. To test whether model-
brain alignmentpredictswhichpopulation the reader comes from(i.e., L1 vs
L2 readers), we built a classifier model using the leave-one-run-out cross-
validation approach. We evaluated the model performance using the
bootstrap approach (for details, see Supplementary Note 2).

Impacts of individual differences on model-brain alignment
To examine the impacts of individual differences, we constructed
regression-based models to predict model-brain alignment in lan-
guage ROIs by including linguistic and attentional abilities as pre-
dictors. In light of the importance of linguistic abilities in language
comprehension1,69, the first model included linguistic abilities (i.e.,
vocabulary size and general reading ability) as predictors (referred to
as the ‘Ling model’). The subsequent model consisted of linguistic
and attentional abilities as predictors (referred to as the ‘LingANT
model’), aligning with recent work that highlights the role of cog-
nitive abilities15,16. We established the LingANT model for each of the
three attentional networks for both L1 and L2 readers.

In the field of neurocognitive work, bilingual language experi-
ence also impacts the structure and function of brain regions engaged
in language processes22,23,29. Consequently, we constructed a
regression-based model that included linguistic abilities, cognitive
abilities, and language dominance as predictors (referred to as the
‘Full model’) for L2 readers. Two L2 readers and twelve L1 readers
were excluded from the regression models due to missing behavioral
assessments.

To discern the interaction effects among individual differences pro-
posed by recent studies22,23,29, we added the interaction terms to the
regression-based models. We limited the regression model to the two-way
interaction effect because it is complicated to explain the three-way effects or
above. All predictors included in the regressionmodel were mean-centered
and normalized. The variance inflation factor (VIF) across regression
modelswas below10 (ranging from1.0 to 8.4), indicating an acceptable level
of multicollinearity70. The regression model performance was corrected
using the FDR (q < 0.05) approach.

Data availability
All data needed to evaluate the conclusions of this paper are present in the
paper and/or the Supplementary Information. Data that support the find-
ings of this study are available at https://openneuro.org/datasets/ds003988
and https://openneuro.org/datasets/ds003974.

Code availability
All scripts used in this study can be accessed upon request by contacting the
authors.
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