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Significance

COVID- 19 forced students to rely 
on online learning. Although the 
pandemic has subsided, online 
learning through multimedia 
instructional videos continues to 
shape education. This study 
evaluates the key principles 
associated with students’ 
processing of socio- emotional 
cues in multimedia learning. Our 
findings support the learning 
benefits of the social presence of 
both human and virtual 
instructors in online videos, with 
benefits varying across 
individuals. The data suggest a 
trade- off mechanism where 
socio- emotional processing must 
outweigh concurrent visual 
distractions to improve learning 
outcomes. Our findings hold 
significant implications for today’s 
education in a digital era, where 
online video learning is prevalent.
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COVID- 19 forced students to rely on online learning using multimedia tools, and multimedia 
learning continues to impact education beyond the pandemic. In this study, we combined 
behavioral, eye- tracking, and neuroimaging paradigms to identify multimedia learning pro-
cesses and outcomes. College students viewed four video lectures including slides with either 
an onscreen human instructor, an animated instructor, or no onscreen instructor. Brain activity 
was recorded via fMRI, visual attention was recorded via eye- tracking, and learning outcome 
was assessed via post- tests. Onscreen presence of instructor, compared with no instructor 
presence, resulted in superior post- test performance, less visual attention on the slide, more 
synchronized eye movements during learning, and higher neural synchronization in cortical 
networks associated with socio- emotional processing and working memory. Individual variation 
in cognitive and socio- emotional abilities and intersubject neural synchronization revealed 
different levels of cognitive and socio- emotional processing in different learning conditions. 
The instructor- present condition evoked increased synchronization, likely reflecting extra pro-
cessing demands in attentional control, working memory engagement, and socio- emotional 
processing. Although human instructors and animated instructors led to comparable learning 
outcomes, the effects were due to the dynamic interplay of information processing vs. atten-
tional distraction. These findings reflect a benefit–cost trade- off where multimedia learning 
outcome is enhanced only when the cognitive benefits motivated by the social presence of 
onscreen instructor outweigh the cognitive costs brought about by concurrent attentional 
distraction unrelated to learning.

multimedia learning | socio- emotional processing | neural synchrony | visual attention |  
individual difference

COVID- 19 has negatively impacted education in fundamental ways, as students and teachers 
would lose significant socio- emotional cues when relying exclusively on online learning, as 
compared with face- to- face classroom learning. However, given its convenience and accessi-
bility, online learning with multimedia instructional videos remains the most popular alter-
native to in- person classroom education beyond the pandemic, with unprecedented coverage 
of topics in almost every field. In- depth research in this domain can help better understand 
the technological features and learner- specific characteristics that contribute to effective video 
learning (1, 2). In particular, given the prevalence of instructional videos in today’s education, 
neurocognitive research is needed for evidence- based instructional design grounded in theories 
of multimedia learning.

According to the multimedia learning framework (3) which advocates the joint use of words 
and pictures in video learning, more dynamic, interactive, and personable educational videos 
could yield sustained attention and improved motivation in students. An important hypothesis 
in multimedia learning is social agency theory (3, 4): Social cues from the instructor and instruc-
tional messages can activate the students’ social- affective responses and evoke deeper cognitive 
processing for selecting, organizing, and integrating information, thereby increasing the effec-
tiveness of teaching and quality of learning. Deep cognitive processing can be realized as the 
effective use of working memory in processing information. Socio- emotional cues can help to 
alleviate extraneous cognitive load due to the processing of distracting information (5, 6), thereby 
promoting deeper cognitive processing.

However, current online learning practices, especially coming out of COVID - 19, significantly 
limit the availability of social interaction and the processing of socio- emotional cues where the 
instructor typically sits or stands still next to lecture slides. This violates specifically the “embod-
iment principle” of multimedia learning (3, 7), according to which human faces, facial expressions, 
and voices are critical for students’ socio- emotional responses and sustained attention. Further, 
the teacher sometimes turns off the face image and presents only the slides during video lectures. 
This leads to the consideration of the “image principle” (8–10)—whether the instructor’s onscreen 
image activates social- affective responses, engages more in- depth cognitive processing, and 

OPEN ACCESS

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//w

w
w

.p
na

s.
or

g 
by

 "
PR

IN
C

E
T

O
N

 U
N

IV
 L

IB
R

A
R

Y
, A

C
Q

U
IS

IT
IO

N
 S

E
R

V
IC

E
 P

E
R

IO
D

IC
A

L
S"

 o
n 

M
ar

ch
 1

1,
 2

02
4 

fr
om

 I
P 

ad
dr

es
s 

14
0.

18
0.

24
0.

89
.

https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
mailto:pi2li@polyu.edu.hk
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2309054121/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2309054121/-/DCSupplemental
https://orcid.org/0000-0002-6782-3859
https://orcid.org/0000-0001-7013-5275
https://orcid.org/0000-0003-4055-6938
mailto:
https://orcid.org/0000-0002-3314-943X
http://crossmark.crossref.org/dialog/?doi=10.1073/pnas.2309054121&domain=pdf&date_stamp=2024-3-7


2 of 12   https://doi.org/10.1073/pnas.2309054121 pnas.org

consequently improves learning. While previous studies have shown 
positive impacts of embodiment, studies of the image principle, how-
ever, are inconclusive, with some showing positive results (8–10) while 
others suggesting the instructor’s image may distract students, diverting 
their attention from learning and hence impeding learning (11, 12). 
The current study is designed to use multimodal experimental para-
digms to examine the image and embodiment principles—that is, to 
determine the effects and educational impacts of the instructor’s 
onscreen role (i.e., the presence vs. absence of the instructor) and the 
embodiment type of the instructor (i.e., human instructor vs. animated 
instructor) on learner’s visual attention, neural activity, and learning 
outcome.

Few studies have investigated the student’s neural activity during 
multimedia learning. An earlier electroencephalography (EEG) study 
(13) revealed decreased theta band power implying lower cognitive load, 
reduced self- reported cognitive effort, and improved learning perfor-
mance with an onscreen instructor compared with no onscreen instruc-
tor. An functional near- infrared spectroscopy (fNIRS) study (14) tested 
whether animated anthropomorphic pedagogical agents could present 
social cues that elicit neural responses in the mentalizing network 
engaged in mentalizing and social reasoning (15). The authors found 
improved learning performance, less self- reported cognitive load, and 
increased neural activation in the mentalizing network due to such ped-
agogical agents. Such findings suggest that we can systematically examine 
from a neurocognitive perspective whether there is a direct relationship 
among instructor’s image, cognitive load, and socio- emotional processing 
of the learner, and if there is, how it is related to the learning outcome.

In this study, we use a data- driven, intersubject correlation (ISC) anal-
ysis (16–18), to study the neural mechanisms in multimedia learning, 
specifically the joint contributions of neural networks implicated in atten-
tional control, socio- emotional processing, and working memory accord-
ing to the extant neuroimaging literature (19–22). ISC has been a useful 
paradigm in naturalistic neuroimaging studies, especially when partici-
pants receive audiovisual materials that are continuously presented (e.g., 
instructional videos) while their neural responses are recorded (23–26). 
Robust ISC was consistently found not only in the perceptual cortex but 
also in higher- order brain regions associated with language comprehen-
sion, cognitive control, mentalizing, and learning (23, 25–28). In our 
study, ISC is used to measure shared stimulus- locked responses by cor-
relating the time series of BOLD activity across subjects for individual 
voxels or regions to isolate stimulus- driven neural synchronization during 
multimedia learning. Furthermore, recent studies (29, 30) have applied 
ISC analysis to the moment- to- moment eye- movement data during video 
learning, showing that ISC can be predictive of video learning perfor-
mance when it is derived from eye gaze positions (29) and such ISC is 
also correlated with EEG- based brain synchrony data (30). In this study, 
we further extend the methodology to a combined dataset from eye 
movements and functional MRI data to analyze how learners allocate 
visual attention and process audiovisual and social- cognitive information 
during video learning.

To further examine individual differences underlying multimedia 
learning, we used “intersubject representational similarity analysis” 
(IS- RSA) (28, 31), a method that uses second- order similarity akin to 
representational similarity analysis (32). It compares subject- by-  
subject pairwise brain- based ISC matrices and subject- by- subject pairwise 
behavioral individual difference matrices. IS- RSA can thus reveal links 
between individual differences in brain activity and behavior and offer 
insights into the neural underpinnings of unique stimuli characteristics. 
In a recent study (26), this method was used to demonstrate that measures 
of social desire and self- control correlate with brain networks in partici-
pants during the viewing of only emotion- laden videos, but not neutral 
videos. Using IS- RSA, we also aim at further discerning varying levels of 
processing demands imposed by video learning formats (e.g., with the 
presence or absence of onscreen instructors). Previous research (33) 

provided evidence that individuals with different working memory abil-
ities have different learning outcomes when facing elevated cognitive load 
(e.g., language learning in virtual reality). We hypothesized that, under 
heightened processing demands, participants with higher abilities will 
likely converge on similar cognitive strategies and thus show more syn-
chronized neural activities. Such convergence or alignment would man-
ifest as positive correlations between behavioral data and neural data, for 
example, individuals with higher abilities show higher similarity when 
IS- RSA is applied to both sets of data. If such correspondences are 
observed under one but not the other condition, it would suggest that 
one condition imposes a specific processing demand on the learner in 
comparison to the other (26).

Taken together, the current study sets out to use ISC and IS- RSA to 
examine multimodal data obtained from naturalistic neuroimaging with 
simultaneous recordings of participants’ functional magnetic resonance 
imaging (fMRI), eye movements, learning performance, and their indi-
vidual cognitive and socio- emotional processing abilities (Fig. 1). First, 
we ask whether students’ learning performance will benefit from the 
presence of the instructor’s image, thereby testing the image principle, 
and whether a higher level of humanness would engage stronger 
socio- emotional processing in multimedia learning, thereby testing the 
embodiment principle. Second, we examine the underlying neural cor-
relates of the onscreen presence of the instructor and the humanness level 
of instructor and ask how neural patterns may reflect cognitive and 
socio- emotional processing. Third, by linking our multimodal behavioral 
and neuroimaging data, we examine what costs or benefits the onscreen 
instructor may have for the learner that give rise to either improved or 
impoverished learning performance. We predict that the onscreen pres-
ence of an instructor, especially a human instructor (as compared with 
the animated instructor), would attract the learner’s attention more 
strongly during learning. This may lead to deeper cognitive processing 
even when learners devote less attention to the learning content on the 
slide. We also expect that if the onscreen instructor sufficiently motivates 
learners, it may lead to higher levels of eye- movement synchronization 
and neural synchronization and their second- order correspondence, 
indicative of stronger cognitive engagement and socio- emotional pro-
cessing during learning. Such alignment could also further correlate with 
the learning outcome.

Results

Students Learned Better with an Onscreen Instructor but Learning 
Was Not Affected by whether the Instructor Was Human or 
Animated. The behavioral data comprised the subjects’ scores on the 
comprehension, recall, and transfer tests (Materials and Methods) under 
different learning conditions. First, we tested the image principle by 
determining whether the social presence of the instructor would hinder 
or improve learning performance. Specifically, we compared learning 
performance under the instructor- present (N = 38) and instructor- absent 
(N = 19) conditions. The former condition included both the instructor- 
present/neutral human (N = 20) and instructor- present/smiling human 
(N = 18) sub- groups, given that no significant difference was observed 
between the two conditions in both behavioral and neural domains (See 
SI Appendix, Fig. S1 and Tables S1 and S4; all reports below were based 
on analyses of the aggregated data of these two conditions). We conducted 
three ANCOVA tests and found that learners under the instructor- present 
condition obtained significantly higher comprehension (F1,50 = 18.78, 
P < 0.001, ηp

2 = 0.27), recall (F1,50 = 4.99, P = 0.030, ηp
2 = 0.09), and 

transfer scores (F1,50 = 6.83, P = 0.012, ηp
2 = 0.12) than learners under the 

instructor- absent condition (Fig. 2A). These results indicate that students 
learned better with an onscreen instructor.

The second analysis was to determine whether the embodiment type 
of the instructor would affect learning performance, thus testing the 
embodiment principle. Specifically, we compared learning performance D
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under the human instructor (N = 18) and animated instructor (N = 16) 
conditions.* Similarly, we adopted three ANCOVA tests. Fig. 2B shows 
no significant differences between the conditions in comprehension (F1,27 
= 0.03, P = 0.87, ηp

2 = 0.001), recall (F1,27 = 0.87, P = 0.36, ηp
2 = 0.03), 

or transfer test scores (F1,27 = 2.16, P = 0.15, ηp
2 = 0.07). Thus, students 

learned at equivalent levels for both types of onscreen instructors (human 
or animated).

Students Attended More to the Slides When an Instructor Was 
Not Present Onscreen or When the Instructor Was Animated. 
Following the standard in the multimedia learning literature (34), 
we extracted four fixation- related measurements on the slide’s area of 
interest (AOI; Fig. 1B) under the instructor- present and instructor- 
absent conditions, respectively, to examine the learner’s attention 
allocation during learning (Materials and Methods). Four ANCOVA 
tests were performed to examine the image principle by determining 
the effect of instructor presence on learners’ attention allocation. 
Results revealed that dwell time percentage (F1,50 = 27.92, P < 0.001, 
ηp

2 = 0.36; see Fig. 2C) and fixation count percentage on the slides 
(F1,50 = 16.32, P < 0.001, ηp

2 = 0.25) were both larger under the 
instructor- absent condition than the instructor- present condition. For 
other measurements, there were no significant differences between 
these two conditions (dwell time: F1,50 = 0.08, P = 0.77, ηp

2 = 0.002; 
fixation count: F1,50 = 0.38, P = 0.54, ηp

2 = 0.008). In summary, 
compared with the instructor- absent condition, learners under the 
instructor- present condition fixated less on slides, suggesting less 
attention devoted to the learning content due to the onscreen presence 
of the instructor.

We further extracted four fixation- related measurements for the 
AOIs on the slide and on the instructor’s image, respectively, under 
both the human instructor and the animated instructor conditions 
(see Fig. 1B for the AOIs). Eight ANCOVA tests were implemented 
to discern the effect of the instructor’s embodiment type on these eye 
fixation- related measurements. Fig. 2C showed that learners under 
the animated instructor condition, compared with the human instruc-
tor condition, spent a significantly larger portion of dwell time on 
the learning content (F1,27 = 9.10, P = 0.006, ηp

2 = 0.25), while there 
was no significant difference in other measurements (dwell time: 
F1,27 = 0.78, P = 0.38, ηp

2 = 0.028; fixation count percentage: 
F1,27 = 3.40, P = 0.08, ηp

2 = 0.11; fixation count: F1,27 = 0.69, P = 0.41, 
ηp

2 = 0.03). Learners also devoted significantly lower dwell time per-
centage (F1,27 = 11.14, P = 0.002, ηp

2 = 0.29), shorter dwell time 
(F1,27 = 8.60, P = 0.007, ηp

2 = 0.24), lower fixation count percentage 
(F1,27 = 4.99, P = 0.034, ηp

2 = 0.16), and fewer fixation counts (F1,27 =  
7.30, P = 0.012, ηp

2 = 0.21) on the animated instructor than on the 
human instructor, suggesting that learners attended less to the slides 
when the instructor was human than when it was animated.

More Synchronized Eye Movements Were Correlated with 
Better Learning. In order to quantify eye movement synchronization 
under different learning conditions, we derived eye- movement ISC 
scores for each learner using the moment- to- moment gaze positions 
while viewing the videos (Materials and Methods and Fig. 1C). We 
conducted two analysis of covariance (ANCOVA) tests to examine 
under which condition eye movements during video learning were 
more synchronized across learners. Next, we correlated individual eye- 
movement ISC scores with individual learning performance under 
each condition. Finally, we concatenated eye- movement ISC scores 
and learning performance scores across conditions to test whether 

Fig. 1.   A schematic diagram of experimental procedure 
and data analysis. (A) The experimental procedure. 
Participants took prior knowledge tests and filled 
in their demographic information before the main 
experiments. During the main experiment, which 
took place in the MRI scanner, participants watched 
video lectures and completed multiple comprehension 
questions (MCQs) that tap into their comprehension 
of the learning content. They were then sent out of 
the scanner to complete recall and transfer questions. 
During the delayed test, participants completed 
cognitive or sociability/emotionality tests (Behavioral 
Measurements). (B) The fMRI experimental design. Each 
participant watched four lectures on videos covering four 
different topics (within- subject), under one of the four 
learning conditions (between- subjects). We constructed 
two rectangular AOIs enclosing the instructor face and 
the content slides, respectively. (C) ISC analysis applied 
to both eye movements and fMRI signals, which were 
simultaneously recorded during video watching.

*The human instructor condition here included data from only the instructor- present/
smiling human sub- group, so that the results could be compared with those from the 
animated instructor condition (which included only smiling animated instructors).D
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there was an overall correlation between synchronized eye movements 
and learning performance.

We found that learners under the instructor- present condition 
showed significantly higher eye- movement ISC scores than learners 
under the instructor- absent condition (F1,47 = 59.59, P < 0.001, 
ηp

2 = 0.53; Fig. 2D). Learners under the animated instructor condition 
also showed significantly higher ISC scores than those under the human 
instructor condition (F1,27 = 27.88, P < 0.001, ηp

2 = 0.43). Further, 
eye- movement ISC scores were positively correlated with comprehen-
sion scores under the instructor- present (r = 0.33, P = 0.023; Fig. 2E) 
and under the human instructor (r = 0.42, P = 0.042) conditions. After 
concatenating eye- movement ISC scores across all conditions, we 
observed a condition- independent positive correlation between 
eye- movement ISC and learning performance (recall: r = 0.37, P < 
0.001; transfer: r = 0.44, P < 0.001; comprehension: r = 0.30, P = 
0.007). These results indicated that individual eye- movement ISC was 
predictive of learning performance, suggesting that learners who allocate 
their visual attention more similarly are those who learn better, con-
sistent with other recent eye- movement findings (29).

Greater Neural Synchronizations Were Observed When the 
Instructor Was Present or When the Instructor Was Animated. 
To assess the degree of neural synchronization across learners under 
instructor- present and instructor- absent learning conditions, we 
constructed two group- level ISC maps (Materials and Methods and 
Fig. 1C). We found significant ISCs across a large range of the visual, 
auditory, and higher- order cortical regions, including superior temporal 
gyrus (STG), middle temporal gyrus (MTG), dorsomedial prefrontal 
cortex, and posterior parietal cortex (Fig. 2F) under both conditions. 
Next, we tested the image principle by examining brain regions that 
had different synchronization patterns under the two conditions. 
The results suggested that relative to the instructor- absent condition, 
the instructor- present condition evoked significantly greater neural 
synchronizations in the left fusiform gyrus (FG) and anterior cingulate 
cortex (ACC), the right mPFC, STG, MTG, and superior frontal 
gyrus (SFG; Fig. 2F and SI Appendix, Table S5). It is worth noting that 
FG is a classical region specialized in face processing (35), and higher 
ISC in this region indicates that the onscreen instructor’s image led to 
secondary processing not directly related to the learning content. For 

Fig. 2.   Learning performance, eye fixation duration, and eye- movement and brain ISC results for the image and embodiment principles. (A) Effect of onscreen 
presence of instructors on recall, comprehension, and transfer scores. The instructor- present learners (N = 38) significantly outperformed the instructor- absent 
learners (N = 19) across all three learning performance measurements (ps < 0.05). (B) Effect of the embodiment type of instructor (human, N = 18 vs. animated, 
N = 16) on recall, comprehension and transfer scores (NS; ps > 0.05). (C) Effect of instructor presence and instructor embodiment type on eye fixations on 
the lecture slides. Learners allocated less eye fixation on the lecture slides indicated by significantly lower dwell time percentage on the slide AOI, under the 
instructor- present condition (P < 0.05) and under the human instructor condition (P < 0.05). (D) Effect of instructor presence and instructor embodiment type 
on eye movement synchronization. The instructor- present condition as compared with the instructor- absent condition, and the animated instructor condition 
as compared with the human instructor condition, both resulted in more synchronized eye movements (P < 0.05). (E) Correlations between eye- movement ISC 
and learning performance. More synchronized eye movements were positively correlated with better learning performance scores concatenated across all 
three learning conditions (ps < 0.05). (F) Effect of instructor presence on learners’ neural synchronization. The instructor- present condition elicited significantly 
greater neural synchronizations than the instructor- absent condition. (G) Effect of the embodiment type of the instructor on learners’ neural synchronization. 
The animated instructor condition elicited significantly greater neural synchronizations than the human instructor condition. Notes: Asterisks in the plots indicate 
statistically significant results (i.e., P < 0.05), and error bars indicate the SEs.
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the human and animated instructor conditions, there were significant 
ISCs in visual and auditory regions, high- order language regions, and 
frontoparietal executive control regions (Fig. 2G). Further, with regard 
to the embodiment principle, greater neural synchronizations were 
elicited in more brain regions by the animated instructor condition 
than by the human instructor condition in visual and higher- order 
regions (Fig. 2G and SI Appendix, Table S5) including the right FG, 
middle occipital gyrus, inferior frontal gyrus (IFG), the left LG, MTG, 
MFG, and superior parietal lobule (SPL).

The above results suggest neural synchronization emerges across 
all learning conditions in key cognitive brain regions. Greater neural 
synchronization under the instructor- present (as compared with the 
instructor- absent) condition illustrated a higher degree of neural syn-
chrony induced by the onscreen presence of the instructor. However, 
a lower degree of neural synchronization was identified under the 
human instructor condition in several brain regions, suggesting 
greater variability in neural responses induced by the human (as com-
pared with the animated) instructor. These ISC patterns are consistent 
with those from the eye- movement ISC analysis, for both compari-
sons. We return to the interpretation of this finding in Discussion.

Neural Synchrony among Higher- Ability Learners Entailed 
Additional Cognitive and Socio- Emotional Processing Demands 
from the Onscreen Instructor. Using the IS- RSA method (28, 31), 
we constructed pairwise behavioral similarity matrices based on 
learners’ cognitive and socio- emotional scores where higher pairwise 
similarity was generated among individuals with higher scores (see 
Materials and Methods and SI  Appendix, S6 for details) and then 
searched for brain regions where the derived brain ISC matrices 
exhibit positive correlations with the behavioral matrices. By doing 
this analysis, first, we wanted to pinpoint brain regions where neural 
ISC matrices are similarly structured as behavioral matrices, so as 
to identify the brain region’s involvement in the relevant cognitive 
processes (28, 31, 32). Second, we also wanted to see whether a brain–
behavior correlation exclusive to one condition exists, and if so, how 
it entails unique processing demands of this condition as compared 
with another condition (26). Following previous literature using IS- 
RSA (28), we hypothesize that given higher processing demands, 
those learners with higher abilities tend to exhibit more homogeneous 
neurocognitive strategies to tackle the increased demands, manifested 
as synchronized brain activity. This hypothesis provides the basis for 
the positive correlations between the neural and behavioral matrices.

Fig. 3A showed that during instructor- present multimedia learning, 
the behavioral matrix grounded on attentional control was positively 
correlated with brain ISC matrices in the right posterior cingulate 
gyrus (PCG; r = 0.21, P < 0.05) and bilateral angular gyrus (AG; left: 
r = 0.17, P < 0.05; right: r = 0.21, P < 0.05). Individual variations in 
socio- emotional processing indexed by emotionality scores were also 
correlated with brain ISC matrices in the left cuneus (r = 0.37, 
P < 0.05). Finally, working memory matrices were positively correlated 
with brain ISC matrices in bilateral precuneus (left: r = 0.17, P < 0.05; 
right: r = 0.22, P < 0.05), bilateral MFG (left: r = 0.18, P < 0.05; right: 
r = 0.20, P < 0.05), left IFG (r = 0.17, P < 0.05), as well as in right 
early visual cortex/LG (r = 0.26, P < 0.05). In contrast to the significant 
correlations under the instructor- present condition, for the instructor- 
 absent condition, we did not find any significant positive correlations 
or alignment between matrices based on behavioral scores and brain 
ISC. These findings suggest that the onscreen presence (as compared 
with the absence) of an instructor could be more taxing on cognitive 
and socio- emotional processing. Under the instructor- present condition, 
participants with higher attentional control, working memory, and 
emotionality showed more synchronized neural responses in coping 
with such elevated demands, giving rise to the significant behavior–brain 
correlations.

We further performed the same whole- brain IS- RSA focused on 
only the human instructor and animated instructor learning condi-
tions in order to examine the embodiment principle. As shown in 
Fig. 4A, first, intersubject variations in attentional control were pos-
itively correlated with ISC matrices in the right superior parietal 
lobule (SPL; r = 0.29, P < 0.05) and precuneus (r = 0.38, P < 0.05), 
and the left ACC (r = 0.38, P < 0.05). Next, intersubject variations 
were positively correlated with ISC matrices in the left cuneus 
(r = 0.60, P < 0.05) and precuneus (r = 0.24, P < 0.05) for emotion-
ality, and in the right MTG for working memory (r = 0.34, P < 0.05). 
These results showed that higher neural synchronization under the 
human instructor condition occurred for learners with higher abilities 
in attentional control, emotionality, and working memory. In con-
trast, no such correlations were observed under the animated instruc-
tor condition.

Neural Synchrony in Cognitive and Socio- Emotional Processing 
Was Associated with Learning Performance. The above IS- RSA 
allowed us to identify key brain regions implicated in attentional 
control, socio- emotional processing, and working memory during 
multimedia learning with an onscreen instructor. We further 
conducted ROI- based IS- RSAs to identify whether brain activity in 
specific regions involved in such processes might be correlated with 
specific learning performance. Based on previous neuroimaging work 
of individual difference (27), we hypothesized that those with either 
higher or similar behavioral performance may exhibit more similar 
neural responses, giving rise to higher neural synchrony (Materials 
and Methods and SI Appendix, S6).

As shown in Fig. 3B, first, both bilateral AG (left: r = 0.11, P < 0.05; 
right: r = 0.12, P < 0.05) and the right PCG (r = 0.14, P < 0.05), regions 
implicated in attentional control, were positively correlated with the 
transfer score matrix where higher scores engendered higher pairwise 
similarity. In addition, the left cuneus (r = 0.09, P < 0.05), involved in 
socio- emotional processing, was positively correlated with learners’ 
recall performance with similar scores generating higher pairwise sim-
ilarity. Among the brain regions involved in working memory, the left 
precuneus (r = 0.14, P < 0.05) was further correlated with the transfer 
score matrix where higher transfer scores generated higher pairwise 
similarity; concurrently for other brain regions involved in working 
memory, including bilateral MFG (left: r = 0.08, P < 0.05; right: 
r = 0.08, P < 0.05), bilateral precuneus (left: r = 0.09, P < 0.05; right: 
r = 0.09, P < 0.05), and the right LG (r = 0.11, P < 0.05), they showed 
significant correlation with learners’ transfer score matrix with similar 
transfer scores generating higher similarity. These correlations of specific 
learning performance with specific brain regions suggest the engage-
ment of the relevant cognitive and socio- emotional processing compo-
nents in multimedia learning.

We further similarly performed ROI- based IS- RSA for the human 
instructor condition. Fig. 4B shows that the right SPL related to 
attentional control was positively correlated with comprehension 
(r = 0.30, P < 0.05; see Fig. 4B) and transfer (r = 0.26, P < 0.05) 
matrices where higher scores generated higher similarity. The left 
ACC, also related to attentional control, showed significant correla-
tion with comprehension matrices constructed similarly (r = 0.23, 
P < 0.05). However, unlike in the instructor present- vs.- absent con-
ditions, neural synchronization here was not significantly correlated 
with learning performance for regions implicated in socio- emotional 
and working memory processing. We also found that those who 
gained better learning performance did not allocate significantly more 
visual attention to the human instructor (dwell time: t(16) = −0.66, 
P = 0.52, d = 0.31; fixation count: t(16) = −0.07, P = 0.95, d = 0.03). 
This contrasted with the animated instructor condition, where those 
with higher learning performance fixated significantly more on the 
animated instructor (dwell time: t(14) = 2.59, P < 0.05, d = 1.29; D
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fixation count: t(14) = 3.30, P < 0.01, d = 1.65). Interestingly, the 
human instructor and animated instructor conditions yielded com-
parable learning performance, as mentioned earlier. The fact that the 

different amount of attention to the instructor’s image did not lead 
to different learning outcomes under human vs. animated instructor 
conditions provides an important insight for understanding the effects 

Fig. 3.   Intersubject representational similarity analysis (IS- RSA) and eye–brain correlational analysis for the image principle. (A) whole- brain voxel- wise IS- RSA 
results for the instructor- present learning condition (N = 38). [A(1)] is an illustration of the whole- brain IS- RSA: three pairwise matrices based on learners’ pairwise 
attentional control, emotionality, and working memory scores are shown to be significantly correlated with intersubject neural responses in key brain regions, 
including right PCG and bilateral AG implicated in conflict monitoring during learning [A(2)], the left cuneus involved in emotional processing [A(3)], right LG, 
the left IFG, bilateral precuneus, and bilateral MFG involved in working memory- related processes [A(4)]. (B) ROI- based IS- RSA results for the instructor- present 
learning condition: three pairwise matrices based on learners’ recall, comprehension, and transfer scores were further correlated with neural synchronization 
in ROIs implicated in the above three cognitive/socio- emotional processes [B(1)], including bilateral AG and the right PCG [B(2)], regions implicated in attentional 
control, which were positively correlated with the transfer score matrix where higher scores generated higher similarity (blue diamonds); left cuneus [B(3)], 
a region implicated in socio- emotional processing, which was also positively correlated with learners’ recall performance with similar scores showing higher 
similarity (blue star). Among the brain regions involved in working memory processing, bilateral MFG, bilateral precuneus, and the right LG [B(4)] showed significant 
correlation with learners’ transfer score matrix where similar scores showing higher similarity (yellow diamonds). Neural synchronization in the left precuneus 
[B(4)] was further correlated with the transfer score matrix where higher scores generated higher similarity (blue diamond). All P values were corrected for 
multiple comparisons to control FDR at P < 0.05. (C) Eye–brain correlation analysis (N = 37). Individual eye- movement ISC was not correlated with brain regions 
implicated in attentional control [e.g., right AG; C(1)]. Individual eye- movement ISC was correlated with individual brain ISC in the left cuneus involved in socio- 
emotional processing [C(2)] and the right LG related to working memory [C(3)]. Notes: The left and right brain regions were marked with “l- ” and “r- ” respectively; 
asterisks indicate statistically significant results (i.e., P < 0.05); Error bars in [B(2), B(3), and B(4)] indicate the SEs of bootstrapped correlational coefficients.
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of cognitive and socio- emotional processing and visual attention, to 
which we return in Discussion.

Eye–Brain–Learning Correspondence Revealed Critical Roles 
of Socio- Emotional Processing and Working Memory. Given 
the findings above, we attempted to connect eye movement, brain 
activity, and learning outcome under a unified framework. We first 
correlated individual eye- movement ISC with individual brain ISC 
for each ROI where there was a significant correlation between neural 
synchronization and learning performance. In other words, these eye–
brain correlation analyses were done only when the brain ISC was 
predictive of learning performance. The results showed that in the 
instructor- present condition, individual learners’ brain ISC obtained 
from regions related to socio- emotional processing (i.e., the left 
cuneus) and working memory (i.e., the right precuneus and LG) were 
significantly correlated with individuals’ eye- movement ISC (cuneus: 
r = 0.45, P < 0.01; precuneus: r = 0.36, P < 0.05; LG: r = 0.48, P < 
0.01; see Fig. 3C). However, individual brain ISC scores in regions 
related to attentional control (e.g., ACC) were not correlated with 
eye- movement ISC (ps > 0.05; see Fig. 3C). Next, we derived eye- 
movement ISC matrices and correlated them with brain ISC matrices 
in each ROIs (i.e., eye movement- brain IS- RSA). Consistent with the 
individual ISC patterns, the IS- RSA results indicated that the neural 
synchrony patterns were positively correlated with the eye- movement 
synchronization patterns in the left cuneus (r = 0.29, P < 0.01) and 
right LG (r = 0.21, P = 0.056), two regions respectively implicated in 
socio- emotional processing and working memory, but not in ACC or 
other attentional control- related regions. Under the human- instructor 
condition, we also performed the same individual brain and IS- RSAs 
between neural synchronization and eye- movement synchronization. 
As with the instructor- present condition, neural synchronization in 
attentional control- related brain regions was not correlated with eye- 
movement synchronization (Fig. 4C). Thus, our eye–brain–learning 
correspondence data revealed the important roles of socio- emotional 
processing and working memory in multimedia learning.

Discussion

The current study adopted a naturalistic multimodal neuroimaging 
approach in order to capture visual attention allocation and neuro-
cognitive patterns underlying multimedia learning. Toward this goal, 
we collected behavioral, eye- movement, fMRI, and learning perfor-
mance data from student learners in an instructional video learning 

context. We further relied on data analytics to identify behavioral and 
neural synchrony patterns, individual differences in cognitive and 
socio- emotional processing, and their relationships with learning 
outcome. Our findings can be summarized as follows. First, learners 
allocated a substantial amount of attention to the onscreen instructor, 
especially the human instructor, which did not hinder the learning 
outcome (contrary to some previous studies). Second, learners exhib-
ited more synchronized eye movements under the instructor- present 
condition and also the animated instructor condition, which were 
associated with better learning outcomes. Third, the instructor’s social 
presence (both human and animated instructors) elicited higher neu-
ral synchronization in regions related to cognitive and socio- emotional 
processing. Fourth, behavior–brain analyses showed that the onscreen 
presence of an instructor, especially human instructor, led to simul-
taneously heightened attentional control, more in- depth socio- 
emotional processing, and deeper cognitive processing. Finally, our 
eye–brain–learning correspondence analyses revealed that the neural 
synchronization and eye- movement synchronization patterns were 
aligned in brain regions involved in socio- emotional processing and 
working memory when there was onscreen presence of an instructor 
(as opposed to when there was none), which was also predictive of 
the learning outcome.

These findings allowed us to better understand the debates in the 
literature revolving around two key principles in the multimedia learn-
ing theory: the image principle and the embodiment principle (3, 4). 
Extant literature has focused on whether the instructor’s image would 
cause distraction to the learners. However, our data showed that while 
the instructor’s image can be distracting (i.e., diverting attention from 
the learning content), the onscreen social presence of the instructor 
would motivate students to learn, especially those students with higher 
cognitive and socio- emotional abilities. We contend that the instructor’s 
image enables them to engage in deeper cognitive processing, therefore 
neutralizing or diminishing the negative effect of distraction. However, 
when such socio- emotional cues cannot outweigh the distraction caused 
by the instructor’s presence, the benefits of onscreen instructor’s social 
presence may not be readily accessible.

Instructor Image Engages More Synchronized Eye Movements, Add­
itional Attentional Control, Deeper Socio- Emotional Processing, 
and Greater Working Memory. Previous eye- tracking studies indicated 
that learners allocate substantial attention to the instructor’s image (up 
to 27% of their total visual attention during video learning) (10–12). 
Some studies showed a null or even negative effect of the instructor’s 

Fig. 4.   Intersubject representational similarity analysis 
(IS- RSA) and eye–brain correlational analysis for the 
embodiment principle. (A) Whole- brain IS- RSA results 
(N = 18): [A(1)] shows that right SPL and precuneus and 
the left ACC were involved in attentional control during 
learning; [A(2)] shows that the left cuneus and precuneus 
were involved in socio- emotional processing, and [A(3)] 
shows that right MTG was engaged in working memory. 
(B) ROI- based IS- RSA results. Only the right SPL and the 
left ACC implicated in attentional control showed neural 
synchronization significantly correlated with pairwise 
comprehension and transfer score matrices where 
higher scores generated higher similarity. (C) Eye–brain 
correlational analysis. Individual eye- movement ISC was 
not significantly correlated with individual brain ISC in 
the three brain regions in A(1) implicated in attentional 
control. The correlational pattern in the (C) panel is based 
on an example from the left ACC, to illustrate the lack 
of correlation between eye- movement ISC and brain 
ISC. Notes: Asterisks indicate statistically significant 
results (i.e., P < 0.05); error bars in (B) indicate the SEs of 
bootstrapped correlational coefficients.
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onscreen presence on learning outcomes (11, 12, 36) while others found 
an advantage of the instructor’s presence (13, 37). Our study indicated 
that, compared to previous studies, our learners allocated a smaller 
proportion of visual attention to the instructor’s image. However, our 
data showed that the learners with onscreen instructors had a higher 
degree of synchronized eye movements and better learning outcomes, 
and significantly and unequivocally outperformed the learners without 
onscreen presence of the instructor.

Consistent with the eye- movement findings, the neuroimaging findings 
also showed key brain regions with significantly greater ISCs under the 
instructor- present condition than the instructor- absent condition. First, 
the right mPFC, a key component of the mentalizing network (20, 38), 
exhibited greater neural synchronization across learners. This also held true 
for the right STG and MTG, in line with other ISC studies using audio-
visual stimuli (25, 27, 39) and with an fNIRs study (14) pinpointing the 
joint role of STG and MTG in social interaction and mentalizing during 
multimedia learning. Second, under the instructor- present condition, we 
also identified greater ISCs in the left ACC in the ventral attention network 
(19, 40) and the right SFG crucial for working memory (40). Third, FG, 
a core facial perception region (35, 41), showed greater neural synchroni-
zation which, as mentioned earlier, indicates that the social presence of the 
instructor led the learner to perform secondary processing not related to 
learning (i.e., face processing). Nevertheless, this additional social process-
ing did not impede but enhanced learning. Given this finding, we suggest 
that the instructor’s image not only evokes extra demand for attentional 
control but also conveys positive socio- emotional and cognitive benefits. 
Better learning performance is only possible if learners are sufficiently 
motivated by the instructor’s onscreen presence to have more in- depth 
cognitive processing.

Our whole- brain IS- RSAs further identified brain regions where 
neural synchrony correlates with behavioral task scores in attentional 
control, socio- emotional processing, and working memory, especially 
among those with higher abilities. These analyses showed that the same 
conditions of multimedia learning may engage different learners in dif-
ferent ways. Specifically, the bilateral AG and PCG exhibited greater 
synchronization across participants with higher attentional control abil-
ities when there was instructor’s onscreen presence. AG has been con-
sidered a hub of the default mode network (42) and the attention 
network. PCG is also a core region of the DMN, serving a central role 
in internally directed cognition (42, 43). The involvement of these 
regions points to the processes of attentional regulation and attentional 
control during learning given the social presence of instructor. Other 
key regions in the mentalizing and emotional processing networks (e.g., 
cuneus) (41, 44) and in working memory (e.g., IFG, MFG, and LG) 
(45–49) were also engaged under the instructor- present condition, sug-
gesting that these brain regions were recruited for greater socio- emotional 
and deeper cognitive processing. Overall, these findings suggest that 
video learning with the onscreen presence of an instructor entails extra 
cognitive and socio- emotional processing demands, and learners with 
higher abilities showed higher consistency in brain and behavioral pat-
terns when coping with such extra processing demands.

Stronger Socio- Emotional and Cognitive Processing Is Related to 
Eye Movement Synchronization and Learning Performance. Given 
our findings, one may wonder whether the onscreen instructor’s social 
presence is related not only to more cognitive and socio- emotional 
processing but also better learning outcome. Our study showed a) 
positive correlation between neural synchronization in the left cuneus 
involved in socio- emotional processing and learning recall scores and 
also b) positive correlations between neural synchronization in regions 
implicated in working memory processing (i.e., bilateral MFG and 
precuneus and the right LG) and transfer score patterns. Importantly, 
our eye- movement synchronization data, which positively predicted 
learning performance, were also shown to be significantly correlated 

with the above brain regions under the instructor- present condition. 
These findings jointly underscore the importance of socio- emotional 
processing and working memory for deeper cognitive processing, a 
foundation for improved learning outcome in multimedia learning as 
predicted by social agency theory (3, 4).

Although brain regions involved in attentional control were also 
significantly correlated with learning performance, unlike (a) and (b), 
there was no correlation between these regions and learners’ eye move-
ment patterns. This lack of correlation suggests that the role of atten-
tional control for learning outcome is less clear as compared with that 
of socio- emotional processing and working memory, perhaps because 
it tends to reflect the distraction caused by the presence of an instruc-
tor (i.e., monitoring the instructor’s presence while allocating atten-
tion to the learning content). Nevertheless, our eye- movement data, 
coupled with our neural and learning performance data, are highly 
aligned with recent findings (29) that the learners who exhibit more 
synchronized eye movements tend to learn better. The combined 
eye- movement ISC and brain ISC patterns (and their correlations 
with each other and with learning performance) motivate our claim 
that the social presence of the onscreen instructor elicits more syn-
chronized neural activities and eye movements during learning, which 
is further predictive of better learning performance.

In an effort to assess the unique contributions (or lack thereof) of 
the brain ISC and eye- movement ISC to learning, we further performed 
hierarchical regression analyses with two types of models: One model 
in which eye- movement ISC was included in the first step and brain 
ISC added in the second step and another model in which brain ISC 
was included in the first step and then eye- movement ISC added in the 
second step (SI Appendix, S2 and Tables S6 and S7). Results showed 
that incorporating both eye- movement ISC and brain ISC in the hier-
archical models nominally increased the variance explained, but the 
additional variance in learning performance accounted for was not 
significantly greater by either the brain ISC or the eye- movement ISC 
alone, due to the high collinearity between the two types of data. These 
analyses prompted us to consider treating brain synchronization and 
eye- movement synchronization as partially overlapping, rather than 
causally linked, indices in the context of multimedia learning. Both 
measurements may capture some unique information that contributes 
to learning, and both are correlated with one another and with students’ 
learning performance. Therefore, we conjecture that it is cognitive 
engagement (29, 30) that drives the observed alignment of brain and 
eye- movement consistency, and the onscreen instructor serving as a 
social cue has sufficiently motivated the learner to a higher level of 
socio- emotional processing and working memory engagement. This 
occurs despite the learner’s involvement in secondary tasks (processing 
the instructor’s visual/facial features). Learners under the instructor-  
present condition may follow the visual content in the video more 
closely, allocate attention more proactively or switch attention more 
efficiently, and ultimately achieve better learning outcome.

Previous studies have separately examined learning performance, eye 
movements, and brain responses (10, 14, 50) and focused on either the 
instructor presence’s distracting (cognitively taxing) or its motivating 
(socio- emotional engagement) impacts on learning performance. In 
contrast, this study integrates multimodal data to examine increased 
attentional control, socio- emotional processing, working memory 
engagement, and their relationship with learning performance. Our 
findings thus help to disentangle the motivational vs. distractive facets 
of the instructor’s social presence that contribute to students’ learning 
successes (or failures) and to account for previous mixed findings.

Embodiment Type of the Onscreen Instructor Influences 
Cognitive and Socio- Emotional Processing but Not Necessarily 
Learning Outcome. In line with previous studies (51, 52), our 
learners had more eye fixations on the high- embodiment (human) D
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instructor than on the low- embodiment (animated) instructor. 
Social agency theory (3, 4) suggests that human or human- like 
characteristics are more appealing and emotionally arousing, which 
may bring about deeper cognitive processing and thus better learning 
performance. However, our data did not provide clear evidence 
for the latter part of this statement. In previous studies (51, 52), 
a high- embodiment instructor was often accompanied by other 
multimedia learning signals such as pointing and gestures, whereas 
in our study, the human instructor was not accompanied by any 
signaling actions, which may have contributed to the discrepancies 
observed. In our findings, both eye- movement ISC and brain ISC 
in the animated instructor condition showed more consistency 
than in the human instructor condition, suggesting that the human 
instructor, when compared with the animated instructor, may 
introduce more variability among learners in cognitive processing 
and visual allocation.

In our whole- brain IS- RSAs, we showed that the social presence 
of a human instructor leads to stronger (but also more diverse) 
socio- emotional processing and working memory engagement. In 
particular, learners with higher emotionality scores displayed greater 
neural synchronization in the left cuneus and precuneus of the men-
talizing network (20, 44). Moreover, we identified a significant cor-
relation between working memory ability and neural synchronization 
(higher ability, more synchrony) in the right MTG, commonly impli-
cated in language and semantic memory (53, 54), which may be due 
to increased processing of the learning content. Further, our results 
revealed that the presence of a human instructor imposes higher atten-
tional control demands than an animated instructor on the learner, 
which is reflected in more synchronized neural activities in the right 
SPL and left ACC, two classic attentional control brain regions. The 
neural synchronization in the right SPL and left ACC was also further 
correlated with learning performance but did not correlate with eye 
movement synchronization patterns. Given these findings, we spec-
ulate that attentional control may serve more as a conflict monitoring 
mechanism during learning rather than directly enhance learning 
outcome.

Trade- Off between Cognitive Processing and Visual Distraction in 
Multimedia Learning. Our findings here regarding the embodiment 
principle (from comparing human vs. animated instructor conditions) 
are consistent with those regarding the image principle (from 
comparing instructor- present vs. instructor- absent conditions). They 
all point to the role of concurrently increased demands on socio- 
emotional processing, working memory, and attentional control 
imposed by the onscreen presence of a human instructor in video 
learning. Further linking the neural synchrony in regions implicated 
in these processes with learning performance, we probed into whether 
the three processes were directly related to learning outcomes. Here 
is where we see some differences. While we observed alignment 
between brain ISC for attentional control- related brain regions and 
learning performance, we did not observe the alignment between 
brain ISC in these same regions with eye movement synchronization. 
These findings suggest that heightened attentional control may be a 
mirror of the increased distraction imposed by the social presence 
of a human instructor (an index of the cost), rather than a benefit 
as socio- emotional processing and working memory are to learning 
performance. This suggestion also aligns with the previous literature 
(11, 12), indicating that secondary face processing during online 
video learning may generate extra attentional cost with the onscreen 
presence of the instructor, and the cost may divert learners from 
the primary learning task and hence potentially impede learning. 
In this connection, it is also important to note that while neural 
synchrony related to socio- emotional processing and working memory 
is predictive of more synchronized eye movement patterns and also 

better learning performance for the image principle, the same eye–
brain–learning correspondence could not be said for the embodiment 
principle.

In order to reconcile the seemingly different patterns of eye–brain–
learning correspondence in the image principle and the embodiment 
principle, we propose a trade- off hypothesis, to account for both the 
costs and benefits of the social presence of the instructor under dif-
ferent conditions, to explain why different learners may have different 
learning performance under the same conditions, and to understand 
why different studies in the literature have generated mixed results 
regarding the positive or negative effects of onscreen instructor. 
Specifically, we argue that the onscreen presence of an instructor’s 
image has both benefits (socially engaging) and costs (cognitively 
distracting), and it will be up to the learner to leverage the benefit 
and minimize the cost.

To begin with, the human and animated instructors elicited diver-
gent patterns in the learner’s eye fixation on the instructor: When the 
onscreen instructor was an animated image, higher- achieving learners 
tended to have more fixations on the instructor’s image than the 
lower- achieving learners; when it was a human instructor, the two types 
of learners did not differ. This may be because when the onscreen 
instructor is human, it engages an elevated level of socio- emotional 
processing, while at the same time, it also requires a high degree of 
attentional control to monitor the distraction so that the learner can 
effectively switch from the instructor’s image to the learning content 
and vice versa. When the onscreen instructor is animated, however, it 
generates a milder socio- emotional response due to the instructor 
image’s anthropomorphic feature (i.e., simulating human but not really 
human), while at the same time, it also creates a weaker distraction.

This argument is further solidified by an extra comparison of the brain 
ISCs between the animated instructor and instructor- absent conditions 
(SI Appendix, S3, Fig. S2, and Table S8). This comparison showed that 
the presence of an animated instructor evoked a certain degree of 
socio- emotional response in the right STG, a key part of the mentalizing 
network, but not the robust facial processing in the classical face pro-
cessing region FG that was seen in the presence of a human instructor. 
Therefore, on average, the benefits vs. costs of the trade- off could poten-
tially offset each other, leading to similar learning outcomes in the human 
vs. the animated instructor conditions. The essence of the trade- off, 
however, lies not in this general balance of the positive vs. negative facets 
of the instructor image, but in the relative balance of the cognitive 
engagement and distraction management on the part of the learner, that 
is, that the socio- emotional processing and cognitive engagement benefits 
must be sufficiently strong to outweigh the negative effect of distraction, 
to result in a clear effect of the instructor’s social presence for these 
learners. This would also help us account for the individual differences 
underlying the eye–brain–learning correspondence patterns we have 
discussed thus far.

In short, the instructor’s social presence entails both motivating and 
distracting facets, resulting from simultaneously heightened attentional 
control and socio- emotional processing demands. The trade- off hypoth-
esis we propose here is focused on the substantial socio- emotional pro-
cessing that is needed to stimulate more in- depth processing of the 
learning content relative to the attentional demands. When the cogni-
tive and motivational benefits of the presence of an onscreen instructor 
outweigh the attentional costs of that presence (arising from secondary 
processing which distracts from the main learning task), then positive 
learning outcomes would emerge. Our study indicates that learners 
who exhibit more aligned brain–eye–learning correspondence can better 
capitalize on the benefit of the social presence of the human instructor 
and better manage visual distraction. By contrast, those who exhibit 
greater variability in brain–eye–learning synchronization are less able 
to fend off the distraction of the instructor’s image and therefore cannot 
fully leverage the benefit of the instructor’s onscreen presence.D
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For future studies of multimedia learning in this direction, we sug-
gest that researchers incorporate other social cues that are commonly 
available in real- life teaching and learning situations, such as pointing, 
gesture, gaze direction changes, and movements (7). Future studies 
should also investigate how the difficulty or complexity of the learning 
content interacts with socio- emotional cues and differentially recruits 
neurocognitive resources. For example, more rudimentary or more 
familiar lecture materials may not as strongly engage visual attention, 
thus mediating the trade- off between attention and socio- emotional 
processing in relation to learning performance (9). In addition, neuro-
cognitive studies across diverse learning environments, such as online 
platforms and virtual reality, could offer invaluable insights for opti-
mizing multimedia learning experiences [see a recent study (55) testing 
various virtual platforms for remote collaboration in online learning].

To conclude, this study provides a systematic multimodal fMRI- eye 
tracking study for evaluating the key principles of multimedia learning. 
Our findings support a learning benefit in having onscreen presence of 
the instructor (even an animated instructor) for online video lectures 
whenever possible, given the convergent neurocognitive and behavioral 
evidence reported. Our findings hold significant implications for today’s 
education in a digital era, where online video learning is prevalent.

Materials and Methods

Participants. Eighty- one college students (43 women and 39 men; mean age 
24.8, range 21 to 34 y of age) from the Hong Kong Polytechnic University partici-
pated in this study. All participants were native speakers of Mandarin and reported 
having normal hearing and normal or corrected- to- normal vision. Participants 
had no history of mental or neurological disorders. The study was approved by 
the Institutional Review Board of The Hong Kong Polytechnic University. All par-
ticipants gave written informed consent before taking part in the experiment. 
They received monetary compensation for their participation.

To ensure that learning could occur, we did not recruit any participants major-
ing in biology or meteorology due to the nature of the learning content (see 
details below). Data from eight participants were excluded from the statistical 
analyses reported below due to nausea, extreme sleepiness, or excessive head 
movement in the scanner. The final sample reported below included 73 par-
ticipants (39 women and 34 men, mean age 24.6 y, range 19 to 31 y of age).

This study adopted a mixed design, with Topic as a within- subject factor and 
Group as a between- subject factor, to avoid familiarity effects and interference 
from different video formats and maximize the efficient use of data that could be 
gained from each participant. We recruited four groups of participants who took 
the video lectures that contained four different topics in the following conditions 
(Fig. 1B): instructor- absent condition (19 participants), instructor- present/neutral 
human condition (20 participants), instructor- present/smiling human condition 
(18 participants), and animated instructor condition (16 participants). To test the 
image principle, we contrasted the instructor- absent (19 participants) condition 
with the two instructor- present conditions (concatenating the instructor- present/
neutral human and instructor- present/smiling human conditions; 38 participants). 
To test the embodiment principle, we contrasted the human instructor (18 partici-
pants) and animated instructor (16 participants) conditions; the former included the 
smiling human condition only to be comparable with the animated instructor that 
had only the smiling facial expression. A summary of the demographic information 
of the four groups of participants can be found in SI Appendix, Table S2.

Materials. Four texts covering the topics of lightning, memory, infectious dis-
ease, and the respiratory system served as the learning content of the study. These 
texts elaborate on the definition, classification, and formation of the themes (see 
variables controlled for these texts in SI Appendix, S4).

Sixteen videos were created for the four topics according to our experimental 
conditions: 1) lecture videos without an instructor (instructor- absent), with only 
the learning content (images and text) (Fig. 1B); 2) lecture videos with a human 
instructor with a neutral facial expression (instructor- present/neutral human), in 
which the instructor stood behind the podium to face the students when delivering 
the learning content (Fig. 1B); 3) lecture videos with a human instructor with a smil-
ing facial expression (instructor- present/smiling human) while other aspects were 

the same as in condition 2) (Fig. 1B); 4) lecture videos with an animated instructor 
(instructor- present/animated) with a smiling facial expression, while other aspects 
of the condition were the same as in condition 3) (Fig. 1B). To ensure our participants 
received the learning content in the same way, we asked the same female speaker 
(the human instructor in condition 2) to record all four lecture audios (each audio file 
lasting approximately 150 s). The 16 videos consisted of presentation slides on the 
right and a podium on the left, in line with most multimedia learning experimental 
setups (3). All videos used a classroom- like setting as the background.

Behavioral Measurements.
Prior knowledge test and post­ test. As in other multimedia learning studies 
(3), we tested participants’ prior knowledge to assess its potential impact on 
learning (SI Appendix, S5) and adopted three standard post- tests quantifying 
comprehension, recall, and transfer, respectively (see specific questions and 
scoring schemes in SI Appendix, S5).
Cognitive tests. Our study tested individual learners’ attentional control, socio- 
emotional ability, and working memory (see details in SI Appendix, S5) as indi-
cators of individual differences. We adopted the Attention Network Test (ANT) to 
assess attentional control (56), the Trait Emotional Intelligence Questionnaire- 
Short Form (TEI) to measure sociability and emotionality (57, 58), and the Letter 
Number Sequencing (LNS) test to measure working memory (59).

Procedure. The experiment included two separate visits to the laboratory. During 
their first visit, participants completed the prior knowledge test, followed by a 
practice session outside the MRI scanner. Once in the MRI scanner, they under-
went a structural MRI scan before taking the main multimedia learning session, 
during which simultaneous fMRI and eye- tracking data were recorded using 
the fixation- related fMRI scanning paradigm (60, 61). This session included four 
separate functional runs, each consisting of watching a lecture video (150 s) 
followed by comprehension questions (true/false judgments). Participants were 
instructed to pay full attention to the lecture video and use an MRI- compatible 
button box to answer questions. The lecture videos and comprehension tests 
were presented using E- prime 3.0 (62), with the order of the four lecture videos 
randomized for each participant and counter- balanced across conditions. The 
in- scanner experiment lasted for about 40 min in total. After participants exited 
the scanner, they completed post- learning assessment including the recall and 
transfer tests. One week later, they were assessed with the battery of cognitive 
and socio- emotional tests described above. See Fig. 1A for illustration.

Data Acquisition.
Eye­ movement data. Participants’ eye movements during in- scanner multimedia 
learning were simultaneously recorded with their neural responses via a long- 
range mount MRI- compatible eye tracker (Eye- Link 1000 Plus; SR- Research). The 
eye- tracker camera was positioned at the rear part of the scanner bore to record 
participants’ eye movements via a reflective mirror placed above the head coil. 
The distance between the camera and the participant’s eyes reflected on the 
reflective mirror was 120 cm. The recording was monocular based on the partici-
pants’ right eye movement. We performed a 13- point calibration and validation 
on the participants’ eyes, followed by a drift check. Drift checks repeated before 
video watching and question answering.
MRI data. Data were acquired using a 3T Siemens Magnetom Prisma Fit scanner with 
a 64- channel head coil. After an initial localizing scan, an anatomical T1- weighted 
MPRAGE image was collected (176 ascending sagittal slices, FOV = 256 mm, 
TR = 1570 ms, TE = 2.15 ms, acquisition time = 220 s, flip angle = 9°, GRAPPA 
in- plane acceleration factor = 2). After the T1, four runs of functional images were 
acquired using a multiband T2* weighted echo- planar sequence (34 interleaved axial 
slices, TR = 1 s, TE = 30 ms, slice thickness = 3.5 mm, FOV= 240 × 240 mm2, and 
80 × 80 matrix size with a resolution of 3 × 3 mm2, inter- slice gap = 10% of the slice 
thickness, flip angle = 58°, acquisition time = 182 s ~ 360 s (depending on self- paced 
question answering speed), multiband acceleration factor = 2, coverage omitted the 
lower extent of the cerebellum). Additionally, we acquired GRE field maps (short 
TE = 4.92 ms, long TE = 7.38 ms) for geometric distortion correction of EPI images.

Data Analysis.
Behavioral data processing and analysis. Learning performance was assessed 
using comprehension (in scanner), recall, and transfer scores (outside scanner; 
see Procedure). Two groups with two raters in each group scored the recall and D
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transfer tests (SI Appendix, S5), with inter- rater reliabilities of r = 0.92 and r = 
0.85, respectively.
Eye­ tracking data processing and analysis. The eye- tracking data were analyzed 
using the software Eyelink Data Viewer (Version: 3.2.1; SR Research Ltd). Two 
rectangular area of interests or AOIs (Fig. 1B) were constructed, which enclosed 
the instructor and the content slides (i.e., the learning content). Four fixation- 
based measurements were computed for each AOI: 1) the dwell time of each 
AOI, defined as the summed duration across all fixations that fell within the AOI; 
2) dwell time percentage, defined as the percentage of dwell time in the AOI in 
relation to the summed duration of all fixations throughout the lecture video; 3) 
fixation count, defined as the total number of fixations falling within one AOI; and 
4) fixation percentage, defined as the percentage of fixation counts for the AOI in 
relation to the summed fixation counts throughout the lecture video.

In order to examine the effect of the presence of the instructor on partici-
pants’ attention during learning, we conducted four ANCOVAs on the four fixation 
measurements of the instructor AOI, with covariates including age, gender, prior 
knowledge, undergraduate major, and postgraduate major. Similarly, to examine 
the effect of the embodiment type of the instructor, we performed eight ANCOVAs 
on the slide and instructor AOIs.

Following the approach of two recent studies (29, 30), we computed ISC 
of moment- to- moment eye movements under individual learning conditions 
using the leave- one- out method: 1) we extracted each participant’s moment- 
to- moment eye gaze positions in the vertical and horizontal coordinates dur-
ing video watching, 2) we computed the Pearson correlation between the eye 
gaze position of each participant and the average eye gaze position of all other 
participants, respectively, for vertical and horizontal directions, 3) we averaged 
the two ISC values from the vertical and horizontal coordinates of eye gazes 
for each participant to derive an individual eye- movement ISC score for the 
following analysis. Before computing the eye- movement ISC, we utilized linear 
interpolation to make up for the missing data caused by eye blinks (30). Data 
from three participants were excluded from the ISC analysis due to incomplete 
eye movement data. Next, we performed two ANCOVAs with the same set of 
covariates to separately examine the effects of the onscreen presence of the 
instructor and the embodiment type of the instructor. We further correlated 
individual eye- movement ISCs with three learning performance measurements 
(comprehension, recall, and transfer) using Pearson correlation (one- tailed). 
Finally, we merged the different learning conditions to compute the correlation 
between individual eye- movement ISCs with the three learning performance 
measurements, to discern the extent to which eye- movement ISC could be pre-
dictive of learning outcomes across conditions.
fMRI data preprocessing and analysis. The fMRI data preprocessing was con-
ducted using the software SPM12 (Wellcome Centre for Human Neuroimaging; 
https://www.fil.ion.ucl.ac.uk/spm/software/spm12/). We adopted the following 
preprocessing pipelines: 1) discarding the first 11 volumes (17); 2) performing 
slice timing corrections; 3) creating voxel displacement maps followed by rea-
lignment and unwarping; 4) conducting coregistration of the anatomical data to 
the mean functional image; 5) normalizing all functional images to MNI space; 6) 
spatially smoothing the functional images by applying a 6 mm full- width- at- half- 
maximum Gaussian kernel. Head motion was quantified by three translational 
and three rotational parameters. One participant’s data were excluded from fur-
ther analysis based on the exclusion criteria (>3 mm translation or >3° rotation).

Smoothed functional images were entered into a first- level analysis to regress 
out six motion parameters, and a 128 s high- pass filter was applied to remove 
low- frequency signals. The resulting residuals of all functional images from four 
separate runs were concatenated into a single image in the same order across 
all subjects for the following analyses.
ISC. We assessed shared neural responses among learners under each learning 
condition using the ISC analysis (16–18) (Fig. 1C). The leave- one- out method was 
used to compute ISC at the subject level within each condition: Each participant’s 
time- series data were correlated with the average of the remaining participants’ 
time- series data, yielding one ISC map for each subject. Individual ISCs were 
computed for each voxel within the group- level gray- matter mask. We performed 
Fisher’s z- transformation to normalize the voxel- wise correlation coefficients for 
the following analyses.

After obtaining individual learners’ ISCs, we derived group- level ISC maps for 
each condition. In order to obtain the group- level ISC map, we conducted four 
one- sample t tests using SPM with covariates including learners’ age, gender, 

prior knowledge, undergraduate major, and postgraduate major. For the statistical 
thresholding of the SPM analyses, we set the maximum statistical threshold as 
puncorr <0.001 at the voxel level and then took a cluster size correction threshold 
pcluster of qFDR < 0.05 determined at puncorr <0.001. Finally, we reported only 
the clusters with at least ten voxels. Further at the group level, we performed two 
sets of two- samples t tests. The statistical thresholds were also kept consistent. 
We used BrainNet Viewer (63) to visualize the results.
Whole­ brain IS­ RSA for cognitive and socio­ emotional processing. The whole- 
brain IS- RSA is operationalized by calculating Spearman’s rank- ordered correlations 
between the vectorized off- diagonal triangles of two subject- by- subject similarity 
matrices (26, 28, 31). These two similarity matrices were respectively constructed 
based on pairwise brain ISC matrix and pairwise behavioral similarity matrices 
derived from cognitive tests (i.e., accuracy score from conflict monitoring of the 
ANT and total score from LNS) and sociability and emotionality scores from Chinese 
TEI (Behavioral Measurements). For the behavioral similarity matrices grounded 
on these abilities, the computation of pairwise similarity between any two pairs of 
subjects allowed higher scores to generate higher similarity compared with subjects 
with lower scores (28; see SI Appendix, S6 for details). Since matrix constructed upon 
sociability scores did not correlate with brain ISC matrices in any brain regions, we 
discarded it from further analysis and focused on emotionality scores.

The statistical significance for the brain–behavior representational similarity 
was determined by the non- parametrical Mantel test (64). When conducting the 
Mantel test, we randomly permutated subject labels of the brain ISC (i.e., rows 
and columns of the brain ISC matrix) 10,000 times to obtain a null distribution 
of surrogate Spearman’s correlation coefficients. Then we compared our observed 
Spearman’s correlation coefficient to this null distribution to obtain a P- value 
for each voxel. These P- values were then FDR corrected due to considerations of 
multiple comparison. For those voxels that survived the FDR correction, we further 
set a cluster- size threshold of 10 survived voxels and extracted MNI coordinates of 
the first and second peaks to create ROIs with a radius of 5 mm for our subsequent 
ROI- based IS- RSAs.
ROI­ based IS­ RSA for learning performance. To identify brain–learning outcome 
correlations, we further performed a series of ROI- based IS- RSA of our learn-
ing performance data comprised of recall, comprehension, and transfer scores 
with the key ROIs from the whole- brain voxel- wise IS- RSA. When constructing 
behavioral matrices for the learning performance data, we were open to entertain 
two possible scenarios when constructing behavioral matrices, that is, neural 
responses may be similar and clustered together for participants a) either at the 
higher end of a certain behavioral spectrum or b) at a similar position anywhere 
along a behavioral spectrum (28). In total, we created six behavioral matrices 
embedding these two pairwise similarity measurements (see SI Appendix, S6 for 
details) with learners’ recall, comprehension, and transfer scores.

For ROI- based brain matrices, we extracted the neural responses of ROIs by aver-
aging neural signals across all voxels. We then constructed a pairwise brain ISC matrix 
for each ROI among learners under each condition. Next, we calculated Spearman’s 
correlation coefficients between the ISC matrix of each ROI and six learning perfor-
mance matrices. Finally, as with the whole- brain IS- RSA, we performed Mantel tests 
with 10,000 permutations to determine the significance of these correlations.

We conducted an additional analysis to determine whether higher- achieving 
learners allocated more eye fixations to the human instructor or to the animated 
instructor compared to lower- achieving learners. To do this, we derived an overall 
learning performance score by concatenating learners’ recall, comprehension, 
and transfer scores. Learners were then divided into higher-  and lower- achieving 
groups based on the median of the overall learning performance score. Two- sample 
t tests were applied to compare the fixation- based measurements of attention to the 
human or the animated instructor between the higher vs. lower- achieving learners.
Correlational analysis for eye­ movement ISC and brain ISC. In order to 
bridge our multimedia learning outcome with our multimodal data encom-
passing eye movements and neural activities, we computed Pearson corre-
lation (one- tailed) between eye- movement ISC scores with brain ISC scores. 
We used the leave- one- out approach to compute the eye- movement ISC and 
brain ISC scores, so that each single ISC indicates the synchronization of eye 
movements or that of neural activities between this participant with the rest 
of the group. In this analysis, we only focused on brain regions implicated in 
cognitive/socio- emotional processing aspects of multimedia learning where 
neural synchrony correlated with learning performance matrices. In addition, 
we computed Spearman correlations between pairwise brain ISC matrices of D
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the aforementioned regions with the eye- movement ISC matrices using the 
IS- RSA approach. To determine the significance of the correlation between the 
two matrices, we performed Mantel tests with 10,000 permutations (64). FDR 
correction (q < 0.05) was applied to all the correlation analyses to control for 
type I error in our multiple comparisons.

Data, Materials, and Software Availability. Anonymized behavioral, eye- 
tracking, and fMRI data have been deposited in the Open Science Framework 
(OSF) data repository (https://osf.io/tc5bq/) (65). The program codes for the IS- 
RSAs reported in the Materials and Methods section are also available on this OSF 
website (https://osf.io/tc5bq/).
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