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Abstract 

Deep language models (DLMs) provide a novel computational paradigm for how the brain processes 

natural language. Unlike symbolic, rule-based models from psycholinguistics, DLMs encode words and 

their context as continuous numerical vectors. These “embeddings” are constructed by a sequence of 

layered computations to ultimately capture surprisingly sophisticated representations of linguistic 

structures. How does this layered hierarchy map onto the human brain during natural language 

comprehension? In this study, we used ECoG to record neural activity in language areas along the 

superior temporal gyrus and inferior frontal gyrus while human participants listened to a 30-minute 

spoken narrative. We supplied this same narrative to a high-performing DLM (GPT2-XL) and extracted 

the contextual embeddings for each word in the story across all 48 layers of the model. We next trained 

a set of linear encoding models to predict the temporally-evolving neural activity from the embeddings at 

each layer. We found a striking correspondence between the layer-by-layer sequence of embeddings 

from GPT2-XL and the temporal sequence of neural activity in language areas. In addition, we found 

evidence for the gradual accumulation of recurrent information along the linguistic processing hierarchy. 

However, we also noticed additional neural processes that took place in the brain, but not in DLMs, 

during the processing of surprising (unpredictable) words. These findings point to a connection between 

language processing in humans and DLMs where the layer-by-layer accumulation of contextual 

information in DLM embeddings matches the temporal dynamics of neural activity in high-order 

language areas. 
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Introduction 

Deep language models (DLMs) provide an alternative computational framework for how 

the human brain processes natural language (Caucheteux & King, 2022; Goldstein et 

al., 2022; Schrimpf et al., 2021; Yang et al., 2019). Classical psycholinguistic models 

rely on rule-based manipulation of symbolical representations embedded in 

hierarchical tree structures (Kako & Wagner, 2001; Lees & Chomsky, 1957). In sharp 

contrast, DLMs encode words and their context as continuous numerical vectors—i.e. 

embeddings. These embeddings are constructed via a sequence of non-linear 

transformations across layers to yield the sophisticated representations of linguistic 

structures needed to produce language (Adiwardana et al., 2020; Brown et al., 2020; 

Radford et al., 2019; Yang et al., 2019).  

Recent research has begun identifying shared computational principles between the 

way the human brain and DLMs represent and process natural language. In particular, 

several studies have used contextual embeddings derived from DLMs to successfully 

model human behavior as well as neural activity measured by fMRI, EEG, MEG, and 

ECoG during natural speech processing (Antonello et al., 2021; Caucheteux & King, 

2022; Goldstein et al., 2022; Heilbron et al., 2020; Hollenstein et al., 2021; Schwartz et 

al., 2019; Toneva & Wehbe, 2019). Furthermore, recent studies have shown that 

similarly to DLMs, the brain incorporates prior context into the meaning of individual 

words (Jain & Huth, 2018; Caucheteux et al., 2021a; Schrimpf et al., 2021), 

spontaneously predicts forthcoming words (Goldstein, Zada et al., 2022), and 

computes post-word-onset prediction error signals (Donhauser & Baillet, 2020; Willems 

et al., 2016; Heilbron et al., 2020; Goldstein, Zada et al., 2022). 

In this study, we focus on the internal sequence of non-linear transformations of the 

embeddings across layers within DLMs in relation to the internal processing of words 

in natural language in the human brain. How do these embeddings change across 

layers, and how do the layerwise sequence of transformations map onto the 

processing hierarchy of natural language in the human brain? 

Recent work in natural language processing (NLP), has identified certain trends in the 

properties of embeddings across layers in DLMs (Rogers et al., 2020; Manning et al., 

2020; Tenney et al., 2019). Embeddings at early layers most closely resemble the 

static, non-contextual input embeddings (Ethayarajh, 2019) and best retain the original 

word order (Liu et al., 2019); in contrast, embeddings are thought to become 

progressively more context-specific and sensitive to long-range linguistic 

dependencies among words across layers (Cui et al., 2019; Tenney et al., 2019). 
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Embeddings at the final layers are typically specialized for the training objective (next-

word prediction in the case of GPT2–3) (Brown et al., 2020; Radford et al., 2019). 

These properties of the embeddings emerge from the conjunction of the architectural 

specifications of the network, the predictive objective, and the statistical structure of 

real-world language (Richards et al., 2019; Hasson et al., 2020).  

In this study, we investigated how the layered structure of DLM embeddings maps 

onto the temporal dynamics of neural activity in language areas during natural 

language comprehension. Naively, we may expect the layerwise embeddings to 

roughly map onto a cortical hierarchy for language processing (similarly to the mapping 

observed between convolutional neural networks and the primate ventral visual 

pathway; Güçlü & van Gerven, 2015; Yamins & DiCarlo, 2016). In such a mapping, early 

language areas will be better modeled by embedding extracted from early layers of 

DLMs, whereas higher-order areas will be better modeled by embeddings extracted 

from later layers of DLMs. Interestingly, studies that examined the layer-by-layer match 

between DLM embeddings and brain activity using fMRI have observed that 

intermediate layers tend to provide the best fit across many language ROIs (Toneva & 

Wehbe, 2019; Caucheteux et al., 2021a; Schrimpf et al., 2021; Kumar, Sumers et al., 

2022). These findings do not support the hypothesis that DLMs capture the processing 

sequence of words in natural language in the human brain.  

In contrast, using ECoG recording with superior spatiotemporal resolution, we report 

that the human brain’s internal temporal processing of spoken narrative matches the 

internal sequence of non-linear layerwise transformations in DLMs. The contextual 

embedding for each word in the narrative was extracted from all 48 layers in a specific 

DLM (GPT2-XL; Radford et al., 2019). Next, we compared the internal sequence of 

embeddings across the layers of GPT2-XL for each word to the sequence of neural 

responses recorded via ECoG in human participants. We first replicated the finding 

that intermediate layers best predict cortical activity. However, the improved temporal 

resolution of our ECoG recordings revealed a remarkable alignment between the 

layerwise DLM embedding sequence and the temporal dynamics of cortical activity 

during natural language comprehension. For example, within the inferior frontal gyrus 

(IFG; i.e. Broca’s area) we observed a temporal sequence of encoding where earlier 

layers yield peak encoding performance earlier in time relative to word onset, and later 

layers yield peak encoding performance later in time. This finding suggests that the 

sequence of transformation across layers in DLMs maps onto a temporal accumulation 

of information in high-level language areas. Furthermore, we found evidence for the 

gradual accumulation of recurrent information along the linguistic processing hierarchy. 
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These findings point to a strong connection, with crucial differences, between the way 

the human brain and DLMs code natural language.  

Results 

We collected electrocorticographic (ECoG) data from 9 epilepsy patients while they 

listened to a 30-minute audio podcast (“Monkey in the Middle”, NPR 2017). In prior 

work (Goldstein et al., 2022), we used embeddings from the final hidden layer of GPT2-

XL to predict brain activity and found that these contextual embeddings outperform 

static (i.e. non-contextual) embeddings (see also Caucheteux et al., 2021a; Schrimpf et 

al., 2021). In this paper, we expand our analysis by modeling the neural responses for 

each word in the podcast using contextual embeddings extracted from each of the 48 

hidden layers in GPT2-XL (Fig. 1A). We focus on four areas along the ventral language 

processing stream (Hickok & Poeppel, 2004; Karnath, 2001; Poliva, 2016): middle 

superior temporal gyrus (mSTG, n = 28 electrodes), anterior superior temporal gyrus 

(aSTG, n = 13), inferior frontal gyrus (IFG; i.e. Broca’s area, n = 46), and the temporal 

pole (TP, n = 6). We selected electrodes previously shown to have significant encoding 

performance for static (GloVe) embeddings (corrected for multiple tests; Goldstein et 

al. 2022). Finally, given that prior studies have reported improved encoding results for 

words that are correctly predicted by DLMs (Caucheteux & King, 2022; Goldstein et al., 

2022), we separately model the neural responses for correct predictions (i.e., where 

GPT2-XL’s top-1 next-word predictions were correct; n = 1709) versus incorrect 

predictions. To ensure that we only analyze incorrect predictions and to match the 

statistical power across the two analyses, we defined incorrect predictions as cases 

where all top-5 next-word predictions were incorrect (n = 1808) (see Figs. S1–3 for 

analyses of all words combined).  

For each layer and each lag (25 ms shifts relative to word onset), we fit a linear 

regression model using 90% of the words and predict brain activity in the remaining 

10% of the words (10-fold cross-validation). We evaluate the performance of our model 

by correlating our predicted neural responses for each word with the actual neural 

responses (Fig. 1A–B). The analysis is repeated for each lag, ranging from -2000 ms 

before word onset (0 ms) to +2000 ms after word onset. We color-coded the encoding 

performance according to the index of the layer from which the embeddings were 

extracted, ranging from 1 (red) to 48 (blue; Fig. 1A). To better visualize the temporal 

dynamic across layers, we scaled the encoding performance to peak at 1 (Fig. 1B, right 

panel). To evaluate our procedure on specific regions of interest (ROIs), we average the 

encodings for the electrodes in the relevant ROIs before scaling. 
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Figure 1. Layerwise encoding models. (A) We extracted the neural signal for each specific electrode 

before and after each word onset (denoted lag 0). The words and the neural signals were split into 

training and test sets comprising non-overlapping subsets of words for 10-fold cross-validation. The 

neural signal is averaged over a 200 ms rolling window with incremental shifts of 25 ms. For each word 

in the story, a contextual embedding is extracted from each layer of GPT-2 (for example, layer 1, red). 

The dimensionality of the embeddings is reduced to 50 using PCA. For each lag and each electrode, we 

used linear regression to estimate an encoding model that predicts the neural signal from the word 

embeddings. In order to evaluate the linear model, we used the 50-dimensional weight vector estimated 

from the training set to predict the neural signal of the words in the left-out test set from the 

corresponding embeddings. We evaluated the performance of the model by computing the correlation 

between the predicted neural signal and the actual neural signal of the words in the test set. (B) This 

process was repeated for lags ranging from -2000 ms to +2000 ms relative to word onset using the 

embeddings from each of the 48 hidden layers of GPT2-XL. We then rescaled the performance of the 

encoding model for each layer to one by normalizing the peak performance; this allows us to more easily

visualize the temporal dynamics of encoding performance across layers. 

 

y 
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We start by focusing on neural responses for correctly predicted words in electrodes at 

the inferior frontal gyrus (IFG; Broca’s area; N = 46), a central region for semantic and 

syntactic linguistic processing (Goldstein et al., 2022; Hagoort, 2005; Hagoort & 

Indefrey, 2014; Ishkhanyan et al., 2020; LaPointe, 2012; Saur et al., 2008; Yang et al., 

2019).  

The peak correlation of the encoding models in the IFG was observed for the 

intermediate layer 22 (Fig. 2B; for other ROIs and predictability conditions see Supp. 

Fig. 1). This corroborates recent findings from fMRI (Caucheteux et al., 2021; Schrimpf 

et al., 2021; Toneva & Wehbe, 2019) where encoding performance peaks for 

intermediate layers, yielding an inverted U-shaped curve across layers (Fig. 2B). This 

inverted U-shaped pattern holds for all language areas (Fig. S1), suggesting that the 

layers of the model do not naively correspond to different cortical areas in the brain. 

The fine-grained temporal resolution of ECoG recordings, however, suggests a more 

subtle dynamic pattern. All 48 layers yield robust encoding in the IFG, with encoding 

performance near zero at the edges of the lag window (-2000 ms and 2000 ms) and 

increased performance around word onset. This can be seen in the combined plot of 

all 48 layers (Fig. 2C; for other ROIs and predictability conditions see Supp. Fig. 2) and 

when we plot individually selected layers (Fig. 2D, layers 5, 25, 45). A closer look at the 

encoding results over lags (time) for each layer revealed an orderly dynamic in which 

the peak encoding performance for the early layers (e.g., layer 5, red, in Fig. 2D) tends 

to precede the peak encoding performance for intermediate layers (e.g., layer 25, 

green), which are followed by the later layers (e.g., layer 45, blue). To visualize the 

temporal sequence across lags we normalized the encoding performance for each 

layer by scaling its peak performance to 1 (Fig. 2E; for other ROIs and predictability 

conditions see Supp. Fig. 3). The layerwise encoding models in the IFG tend to peak in 

an orderly sequence over time. To quantitatively test this claim, we correlated the layer 

index (1–48) with the lag that yielded the peak correlation (Fig. 2F). The analysis yielded 

a strong significant positive Pearson correlation of 0.85 (p<10e-13; similar results were 

obtained with Spearman correlation; r = .80). Lastly, we also conducted a non-

parametric analysis where we permuted the layer index 100,000 times (keeping the 

lags that yielded the peak correlations fixed) while correlating the lags with these 

shuffled layer indices. Using the null distribution we computed the percentile of the 

actual correlation (r=0.85) an got a significance of p<10e-5. Together, these results 

suggest that, for correct predictions, the sequence of internal transformations across 

the layers in GPT2-XL matches the sequence of internal transformations across time 

within the IFG. 
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Figure 2. Temporal dynamics of layerwise encoding for correctly predicted words in IFG. (A). We 

recorded from 46 electrodes in the inferior frontal gyrus (IFG; Broca’s area) that show positive encoding 

for word embeddings (GLoVe). (B) For each electrode in the IFG, we performed an encoding analysis for 

each hidden layer (1-48) at each lag (-2000 ms to 2000 ms). We then averaged encoding performance 

across all electrodes in the IFG to get a single mean performance value for each lag and layer. We color-
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coded these encoding performance values according to the index of the layers from which the 

embeddings were extracted (red to blue). The peak encoding performance across lags for each layer at 

each electrode was averaged across electrodes and color-coded from early layers (red) to late layers 

(blue). Significance was assessed using bootstrap resampling across electrodes (see Materials and 

Methods). (C ) Average correlation across electrodes for each layer at lags ranging from -2000 ms to 

+2000 ms relative to word onset (lag 0). (D) Encoding performance for layers 5, 25, and 45 demonstrates 

the layerwise shift of peak performance across lags. (E) Scaled encodings. Each layer encoding peak 

was scaled to 1. The colored dots mark the peaked encoding lag for each layer. The results show that 

the deeper the layer is in the model, the later its encoding model peaks (see the sequence from red to 

blue along the x-axis). (F) Scatter plot of the lag that yields peak encoding performance as a function of 

the index of layers. 

Next, we compared the temporal encoding sequence across three additional temporal 

language ROIs (Fig. 3), starting with mSTG (near early auditory cortex) and moving up 

along the ventral linguistic stream to aSTG and TP. We did not observe obvious 

evidence for a temporal structure in the mSTG (r =-.24). This suggests that the 

temporal dynamic observed in IFG is regionally specific and does not take place in the 

early stages of the neural processing hierarchy. In addition to the IFG, we found 

evidence for the same orderly temporal dynamic in aSTG (r = .92, p<10e-20) and TP (r 

= .93, p<10e-22). Similar results were obtained with Spearman correlation (mSTG r =-

.24, p=.09; aSTG r=.55, p=.9; IFG r=.79, p<10e-11;TP r=.95, p<10e-21), demonstrating 

that the effect is robust to outliers. Following our procedure for the IFG we conducted 

permutation tests by shuffling the layers order that yielded the following p-values: 

p<.02 (mSTG), p<10e-5 (aSTG, IFG). Furthermore, the width of the temporal sequence 

gradually increases as we proceed along the ventral linguistic hierarchy (see the 

increase in steepness of the slopes across language areas in Fig. 3). This was tested 

using Levene’s test which yielded significant differences between the standard 

deviations of lags that yield maximal correlations for the different layers in the mSTG 

and aSTG (F = 48.1, p<.01), as well as between the aSTG and TP (F = 5.8, p<.02). The 

largest temporal separation across layer-based encoding models was seen in TP, with 

more than a 500 ms difference between the peak for layer 1 (around -100 ms) and the 

peak for layer 48 (around 400 ms). 
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Figure 3. Temporal hierarchy along the ventral language stream for correctly predicted words. 

Scaled encoding for ROIs along the ventral language processing stream, from the middle superior 

temporal gyrus (mSTG) to the anterior superior temporal gyrus (aSTG), inferior frontal gyrus (IFG), and 

the temporal pole (TP). The results reveal a temporal sequence of layer-based encoding in all language 

areas besides mSTG. Furthermore, the processing timescales (slop of lag-difference across layers) 

increased along the ventral linguistic hierarchy from mSTG to aSTG to IFG and TP.  

The temporal correspondence described so far was observed for words the model 

accurately predicted; does the same pattern hold for words that were not accurately 

predicted? We conducted the same layerwise encoding analyses in the same ROIs for 

unpredictable words—i.e. words for which the probability assigned to the word was 

not among the top-5 highest probabilities assigned by the model (N = 1808). We still 

see evidence, albeit slightly weaker, for layer-based encoding sequences in the IFG (r =

.81, p<10e-11) and TP (r = .57, p<10e-4), but not aSTG (r = .09, p>.55) or mSTG (r = -

.10,p>.48). Similar results were obtained with Spearman correlation (mSTG r = -.10, 

p>.48; aSTG r=.02, p>.9; IFG r=.8, p<10e-11; TP r=.72, p<10e-8), demonstrating that 

the effect is robust to outliers. We conducted permutation tests that yielded the 

 

= 
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following p-values: p>.24 (mSTG), p>.27 (aSTG),p<10e-5 (TP, IFG). We also noticed a 

crucial difference between the encoding of the correctly and incorrectly predicted 

words in the IFG. In the IFG the encoding for early layers (red) shifted from around 

word onset (lag 0) for correct prediction to later lags (around 300ms) for incorrect 

predictions. We ran a paired t-test to compare the average lags (across the electrodes 

in a ROI) that yield the maximal correlations (i.e., peak encoding performance) across 

predicted and unpredicted words for each layer. The paired t-test indicated that the 

shift in peak encoding (at the ROI level) was significant for 9 out of the 12 first layers 

(corrected for multiple comparisons see supp. table 1, q<0.05). 

Figure 4. Temporal hierarchy along the ventral language stream for incorrectly predicted words. 

Scaled encoding performance for separate areas along the ventral language pathway, from the middle 

superior temporal gyrus (mSTG) to the anterior superior temporal gyrus (aSTG), inferior frontal gyrus 

(IFG), and the temporal pole (TP). The encoding analysis was performed for words that were incorrectly 

predicted by the model. A word was classified as incorrectly predicted if it was not among the top 5 

most probable words predicted by GPT2-XL given the context.  
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Discussion 

Prior studies reported shared computational principles (e.g., prediction in context and 

representation using multidimensional embeddings space) between DLMs and the 

human brain (Schrimpf et al., 2021; Caucheteux et al., 2022; Goldstein et al., 2022). In 

the current study, we extracted the contextual embeddings for each word in a chosen 

narrative across all 48 layers and fitted them to the neural responses to each word in 

our human participants. We found that the sequence of layerwise transformations 

learned by GPT2-XL maps onto the temporal sequence of transformations of linguistic 

input in high-level language areas. This finding reveals a surprising and important link 

between how DLMs and the brain process language: conversion of discrete input into 

multidimensional (vectorial) embeddings, which are further transformed via a sequence 

of non-linear transformations to match the context-based statistical properties of 

natural language (Manning et al., 2020). These results provide additional evidence for 

shared computational principles between the way DLMs and the human brain process 

natural language. 

At the same time, our study also points to implementational differences between the 

internal sequence of computations in transformer-based DLMs and the human brain. 

GPT2 relies on a “transformer” architecture, a neural network architecture developed to 

process hundreds to thousands of words in parallel. In other words, transformers are 

designed to parallelize a task that is largely computed serially, word by word, in the 

human brain. While transformer-based DLMs process words sequentially over layers, 

in the human brain we found evidence for similar sequential processing, but over time 

relative to word onset within a given cortical area. For example, we found that within 

high-order language areas (such as IFG and TP) the sequence of layerwise processing 

in DLMs corresponded to a sequence of temporal processing.  

What are possible explanations for this result? First, it may be that cortical 

computations within a given language area are better aligned with recurrent 

architectures, where the internal computational sequence is deployed over time rather 

than over layers. In addition, however, we observed evidence for recurrent processing 

at different time scales across different levels of the linguistic processing hierarchy. 

That is, the sequence of temporal processing unfolds over longer timescales as we 

proceed up the processing hierarchy, from aSTG to IFG, and TP. Second, it may be 

that layered architecture of GPT2 is recapitulated within the local connectivity of a 

given language area like IFG (rather than across cortical areas). That is, local 

connectivity within a given cortical area may resemble the layered graph structure of 

GPT2. Third, it is possible that long-range connectivity between cortical areas could 
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yield the temporal sequence of processing observed within a single cortical area. 

Together, these results hint that a deep language model with stacked recurrent 

networks may better fit the human brain's neural architecture for processing natural 

language. Interestingly, there have been several attempts to develop such new 

architectures, such as universal transformers (Dehghani et al., 2018; Lan et al., 2019) 

and reservoir computing (Dominey, 2021). Future studies will have to compare how the 

internal processing of natural language compares between these models and the brain.  

Previous results indicate that the ability to encode the neural responses in language 

areas using DLMs varies with the accuracy of their next-word predictions and is lower 

for incorrect predictions (Caucheteux & King, 2022; Goldstein et al., 2022). In contrast, 

we observed that even for unpredicted words, the temporal encoding sequence was 

maintained in high-order language areas (IFG and TP). However, we do find a 

difference in the neural responses for unpredictable words in the IFG, in which early 

layers encoding in IFG shifted from around word-onset for predictable words to around 

300-400ms after word-onset for unexpected words (Fig. 4). This finding suggests that 

the dynamic of neural responses in human language areas is systematically different 

for predictable and unpredictable words. 

Replicating prior studies (Caucheteux et al., 2021a; Schrimpf et al., 2021; Schwartz et 

al., 2019), we also noticed that intermediate layers best matched neural activity in 

language areas (Fig. S2). Intermediate layers are thought to best capture the syntactic 

and semantic structure of the input (Hewitt & Manning, 2019; Jawahar et al., 2019) and 

generally provide the best generalization to other NLP tasks (Liu et al., 2019). The 

improved correlation between neural activity and GPT2–XL’s intermediate layers 

suggests that the language areas place additional weight on such intermediate 

representations. At the same time, each layer’s embedding is distinct and represents 

different linguistic dimension (Rogers et al., 2020), and thus, invoke a unique temporal 

encoding pattern. Thus, our finding of a gradual sequence of transitions in language 

areas is complimentary and orthogonal to the level of encoding across layers.  

This paper provides strong evidence that DLMs and the brain process language in a 

similar way. Given the clear circuit-level architectural differences between DLMs and 

the human brain, the convergence of their internal computational sequences may be 

surprising. Classical psycholinguistic theories postulated an interpretable rule-based 

symbolic system for linguistic processing. In contrast, DLMs provide a radically 

different, statistical learning framework for learning the structure of language by 

predicting speakers’ language use in context. This kind of unexpected mapping (layer 
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sequence to temporal sequence) can point us in novel directions for both 

understanding the brain and developing neural network architectures that better mimic 

human language processing. Taken together, this study provides strong evidence for 

shared internal computations between DLMs and the human brain and calls for a 

paradigm shift from a symbolic representation of language to a new family of 

contextual embeddings and statistical learning-based models.  
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Materials and methods 

Data acquisition and preprocessing  

The procedure for collecting and preprocessing including the high-gamma-band 

extraction (70-200 hz) of the neural signal (ECoG) from the participants while they 

listened to the podcast are described in (Goldstein et al., 2022; Hickok, 2009; 

Rauschecker, 2012; Saur et al., 2008) 

Linguistic embeddings  

In order to extract contextual embeddings for the stimulus text, we first tokenized the 

words for compatibility with GPT2-XL. We then ran the GPT2-XL model implemented in 

HuggingFace (Wolf et al., 2020) on this tokenized input. To construct the embeddings 

for a given word, we passed the set of up to 1023 words preceding the word (the 

context) along with the current word as input to the model. We include the current 

word for convenience, but the embedding we extract is the output generated for the 

previous word. This means that the current word is not used to generate its own 

embedding and its context only includes previous words. We constrain the model in 

this way because our human participants do not have access to the words in the 

podcast before they are said during natural language comprehension. 

GPT2-XL is structured as a set of blocks that each contain a self-attention sub-block 

and a subsequent feedforward sub-block. The output of a given block is the 

summation of the feedforward output and the self-attention output through a residual 

connection. This output is also known as a “hidden state” of GPT2-XL. We consider 

this hidden state to be the contextual embedding for the block that precedes it. For 

convenience, we refer to the blocks as “layers”;  that is, the hidden state of output by 

block 3 is referred to as the contextual embedding for layer 3. In order to generate the 

contextual embeddings for each layer, we store each layer’s hidden state for each 

word in the input text. Fortunately, the HuggingFace implementation of GPT2-XL 

automatically stores these hidden states when a forward pass of the model is 

conducted. Different models have different numbers of layers and and embeddings of 

different dimensionality. The model used herein, GPT2-XL, has 48 layers and the 

embeddings at each layer comprise 1600-dimensional vectors. For a sample of text 

containing 101 tokens, we would generate an embedding for each layer and each 

word, excluding the first word as it has no prior context. This results in 48 1600-

dimensional embeddings per word and 100 words; 48 * 100 = 4800 total 1600-long 

embedding vectors. Note that in this example the context length would increase from 1 

to 100 as we proceed through the text. 
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Dimensionality reduction  

Before fitting the encoding models, we first reduce the dimensionality of the 

embeddings by applying principal component analysis (PCA) and retaining the first 50 

components. This procedure effectively focuses our subsequent analysis on the 50 

orthogonal dimensions in the embedding space that account for the most variance in 

the stimulus. 

Encoding models: 

Linear encoding models were estimated at each lag (-2000 ms to 2000 ms in 25-ms 

increments) relative to word onset (0 ms) to predict the brain activity for each word 

from the corresponding contextual embedding. Before fitting the encoding model, we 

smoothed the signal using a rolling 200-ms window. We used a 10-fold cross-

validation procedure ensuring that for each cross-validation fold, the model was 

estimated from a subset of training words and evaluated on a non-overlapping subset 

of held-out test words: the words and the corresponding brain activity were split into a 

training set (90% of the words) for model estimation and a test set (10% of the words) 

for model evaluation. Encoding models were estimated separately for each electrode 

(and each lag relative to word onset). For each cross-validation fold, we used ordinary 

least squares (OLS) multiple linear regression to estimate a weight vector (50 

coefficients for the 50 PCA components) based on the training words. We then used 

those weights to predict the neural responses at each electrode for the test words. We 

evaluated model performance by computing the correlation between the predicted 

brain activity and the actual brain activity across the held-out test words; we then 

averaged these correlations across electrodes. This procedure was performed for all 

the hidden states in GPT2-XL to generate an “encoding” for each layer.  

Correct and incorrect predictions 

After generating encodings for all words in the podcast transcript, we split the 

embeddings into two subsets: words that the model predicted correctly and words that 

the model predicted incorrectly. A word was considered to be predicted correctly if the 

model assigned that word the highest probability of occurring next among all possible 

words. We refer to these subsets of embeddings as “top 1 predictable” (1709/4744 = 

36%) ” and “top 5 predictable”. To reduce the stringency of top 1 prediction, we also 

created subsets of “top 5 predictable” (2936/4744 = 62%) and “top 5 unpredictable” 

words where the criterion for correctness was that the probability for the correct word 

must be among the highest five probabilities assigned to words by the model. We then 

trained linear encoding models as outlined above on these subsets of embeddings.  
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Statistical significance 

To establish the significance of the bars in Fig. 2B we conducted a bootstrapping 

analysis for each lag. Given the values of the electrodes in a specific layer and a 

specific ROI, we sampled the max correlations values with replacement 10^4 samples 

with the size of the number of electrodes. For each sample we computed the average 

and generated a distribution (consisting of 10^4 points). We then compared the actual 

mean for the lag-ROI pair to estimate how significant it is given the generated 

distributions. The ‘*’ indicates two-tailed significance of p<0.01.  
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Supplementary Figure 1. Peak correlations of electrode-averaged encodings for each 

combination of layer (1-48) and brain area (mSTG, aSTG, IFG and TP) and word 

classification (correctly predicted, incorrectly predicted, all words). The significance 

test is done using bootstrap analysis across the electrodes. 
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Supplementary Figure 2. Encoding averaged over electrodes for each combination of 

layer (1-48), brain area (mSTG, aSTG, IFG and TP) and word classification (correctly 

predicted, incorrectly predicted, all words).  
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Supplementary Figure 3. Scaled encoding for each combination of layer (1-48), brain 

area (mSTG, aSTG, IFG and TP) and word classification (correctly predicted, incorrectly

predicted, all words). For completion the correlation between the layer index and max-

lag for condition ‘All’: mSTG (r=.56, p<10e-4), aSTG ( r=.81, p<10e-11), IFG ( r=.89 

,p<10e-16), TP ( r=.75 ,p<10e-9) 

y 
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Layer index p. value q-value Layer index p-value q-value 

1 0.784826 0.459996 25 0.731631 0.3963 

2 0.061834 0.015458 26 0.719935 0.360514 

3 0.016337 0.000953 27 0.608419 0.278859 

4 0.016337 0.00111 28 0.569881 0.249323 

5 0.409457 0.153546 29 0.38613 0.136755 

6 0.016337 0.001688 30 1 0.949051 

7 0.016337 0.001847 31 0.990003 0.696491 

8 0.035199 0.0066 32 1 0.906098 

9 0.016522 0.002409 33 1 0.94135 

10 0.023182 0.003864 34 1 0.922248 

11 0.016337 0.002042 35 1 0.9526 

12 0.051168 0.01066 36 0.719935 0.374966 

13 0.283744 0.094581 37 0.927577 0.618385 

14 0.276009 0.086253 38 1 0.844096 

15 0.21497 0.0627 39 0.784826 0.474165 

16 0.059726 0.013687 40 0.927577 0.61807 

17 0.016337 0.000372 41 0.820915 0.513072 

18 0.191238 0.051794 42 1 0.961332 

19 0.425111 0.168273 43 1 0.736217 

20 0.990003 0.701252 44 1 0.942203 

21 1 0.993479 45 0.548249 0.228437 

22 0.749748 0.421733 46 1 0.968246 

23 0.703456 0.337073 47 1 1 

24 1 0.825196 48 1 0.907848 

 

Supplementary Table 1. The p value and FDR-corrected q-value of the paired 

sampled t-test comparing the lags that achieve maximal correlation in the encoding 

across the different layers (n=48) of GPT2-XL. 

 

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 11, 2022. ; https://doi.org/10.1101/2022.07.11.499562doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.11.499562
http://creativecommons.org/licenses/by-nd/4.0/


References 

Adiwardana, D., Luong, M.-T., So, D. R., Hall, J., Fiedel, N., Thoppilan, R., Yang, Z., 

Kulshreshtha, A., Nemade, G., Lu, Y., & Le, Q. V. (2020). Towards a Human-like 

Open-Domain Chatbot. In arXiv [cs.CL]. arXiv. http://arxiv.org/abs/2001.09977 

Antonello, R., Turek, J., Vo, V., & Huth, A. (2021). Low-Dimensional Structure in the 

Space of Language Representations is Reflected in Brain Responses. In arXiv 

[cs.CL]. arXiv. http://arxiv.org/abs/2106.05426 

Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D., Dhariwal, P., Neelakantan, 

A., Shyam, P., Sastry, G., Askell, A., & Others. (2020). Language models are few-

shot learners. Advances in Neural Information Processing Systems, 33, 1877–

1901. 

Caucheteux, C., Gramfort, A., & King, J.-R. (n.d.). GPT-2’s activations predict the 

degree of semantic comprehension in the human brain. 

https://doi.org/10.1101/2021.04.20.440622 

Caucheteux, C., Gramfort, A., & King, J. R. (2021). GPT-2’s activations predict the 

degree of semantic comprehension in the human brain. bioRxiv. 

https://www.biorxiv.org/content/10.1101/2021.04.20.440622v2.abstract 

Caucheteux, C., & King, J.-R. (2022). Brains and algorithms partially converge in 

natural language processing. Communications Biology, 5(1), 134. 

Donhauser, P. W., & Baillet, S. (2020). Two Distinct Neural Timescales for Predictive 

Speech Processing. Neuron, 105(2), 385–393.e9. 

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 11, 2022. ; https://doi.org/10.1101/2022.07.11.499562doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.11.499562
http://creativecommons.org/licenses/by-nd/4.0/


Dehghani, M., Gouws, S., Vinyals, O., Uszkoreit, J., & Kaiser, Ł. (2018). Universal 

Transformers. In arXiv [cs.CL]. arXiv. http://arxiv.org/abs/1807.03819 

Dominey, P. F. (2021). Narrative event segmentation in the cortical reservoir. PLoS 

Computational Biology, 17(10), e1008993. 

Goldstein, A., Zada, Z., Buchnik, E., Schain, M., Price, A., Aubrey, B., Nastase, S. A., 

Feder, A., Emanuel, D., Cohen, A., Jansen, A., Gazula, H., Choe, G., Rao, A., Kim, 

C., Casto, C., Fanda, L., Doyle, W., Friedman, D., … Hasson, U. (2022). Shared 

computational principles for language processing in humans and deep language 

models. Nature Neuroscience, 25(3), 369–380. 

Güçlü, U., & van Gerven, M. A. (2015). Deep neural networks reveal a gradient in the 

complexity of neural representations across the ventral stream. Journal of Neuroscience, 

35(27), 10005-10014. 

Hagoort, P. (2005). On Broca, brain, and binding: a new framework. Trends in Cognitive 

Sciences, 9(9), 416–423. 

Hagoort, P., & Indefrey, P. (2014). The neurobiology of language beyond single words. 

Annual Review of Neuroscience, 37, 347–362. 

Hasson, U., Nastase, S. A., & Goldstein, A. (2020). Direct Fit to Nature: An Evolutionary 

Perspective on Biological and Artificial Neural Networks. Neuron, 105(3), 416–434. 

Heilbron, M., Armeni, K., Schoffelen, J. M., & Hagoort, P. (2020). A hierarchy of 

linguistic predictions during natural language comprehension. bioRxiv. 

https://www.biorxiv.org/content/10.1101/2020.12.03.410399v1.abstract 

Hickok, G. (2009). The functional neuroanatomy of language. In Physics of Life Reviews 

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 11, 2022. ; https://doi.org/10.1101/2022.07.11.499562doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.11.499562
http://creativecommons.org/licenses/by-nd/4.0/


(Vol. 6, Issue 3, pp. 121–143). https://doi.org/10.1016/j.plrev.2009.06.001 

Hickok, G., & Poeppel, D. (2004). Dorsal and ventral streams: a framework for 

understanding aspects of the functional anatomy of language. Cognition, 92(1-2), 

67–99. 

Hollenstein, N., Renggli, C., Glaus, B., Barrett, M., Troendle, M., Langer, N., & Zhang, 

C. (2021). Decoding EEG Brain Activity for Multi-Modal Natural Language 

Processing. Frontiers in Human Neuroscience, 15, 659410. 

Ishkhanyan, B., Michel Lange, V., Boye, K., Mogensen, J., Karabanov, A., Hartwigsen, 

G., & Siebner, H. R. (2020). Anterior and Posterior Left Inferior Frontal Gyrus 

Contribute to the Implementation of Grammatical Determiners During Language 

Production. Frontiers in Psychology, 11, 685. 

Kako, E., & Wagner, L. (2001). The semantics of syntactic structures. In Trends in 

Cognitive Sciences (Vol. 5, Issue 3, pp. 102–108). https://doi.org/10.1016/s1364-

6613(00)01594-1 

Karnath, H. O. (2001). New insights into the functions of the superior temporal cortex. 

Nature Reviews. Neuroscience, 2(8), 568–576. 

Lan, Z., Chen, M., Goodman, S., Gimpel, K., Sharma, P., & Soricut, R. (2019). ALBERT: 

A Lite BERT for Self-supervised Learning of Language Representations. In arXiv 

[cs.CL]. arXiv. http://arxiv.org/abs/1909.11942 

LaPointe, L. L. (2012). Paul Broca and the Origins of Language in the Brain. Plural 

Publishing. 

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 11, 2022. ; https://doi.org/10.1101/2022.07.11.499562doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.11.499562
http://creativecommons.org/licenses/by-nd/4.0/


Lees, R. B., & Chomsky, N. (1957). Syntactic Structures. In Language (Vol. 33, Issue 3, 

p. 375). https://doi.org/10.2307/411160 

Manning, C. D., Clark, K., Hewitt, J., Khandelwal, U., & Levy, O. (2020). Emergent 

linguistic structure in artificial neural networks trained by self-supervision. 

Proceedings of the National Academy of Sciences of the United States of America, 

117(48), 30046–30054. 

Poliva, O. (2016). From Mimicry to Language: A Neuroanatomically Based Evolutionary 

Model of the Emergence of Vocal Language. Frontiers in Neuroscience, 10, 307. 

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., & Sutskever, I. (2019). Language 

models are unsupervised multitask learners. OpenAI Blog, 1(8), 9. 

Rauschecker, J. P. (2012). Ventral and dorsal streams in the evolution of speech and 

language. Frontiers in Evolutionary Neuroscience, 4, 7. 

Rogers, A., Kovaleva, O., & Rumshisky, A. (2020). A primer in bertology: What we know 

about how bert works. Transactions of the Association for Computational 

Linguistics, 8, 842–866. 

Saur, D., Kreher, B. W., Schnell, S., Kümmerer, D., Kellmeyer, P., Vry, M.-S., Umarova, 

R., Musso, M., Glauche, V., Abel, S., Huber, W., Rijntjes, M., Hennig, J., & Weiller, 

C. (2008). Ventral and dorsal pathways for language. Proceedings of the National 

Academy of Sciences of the United States of America, 105(46), 18035–18040. 

Schrimpf, M., Blank, I. A., Tuckute, G., Kauf, C., Hosseini, E. A., Kanwisher, N., 

Tenenbaum, J. B., & Fedorenko, E. (2021). The neural architecture of language: 

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 11, 2022. ; https://doi.org/10.1101/2022.07.11.499562doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.11.499562
http://creativecommons.org/licenses/by-nd/4.0/


Integrative modeling converges on predictive processing. Proceedings of the 

National Academy of Sciences of the United States of America, 118(45). 

https://doi.org/10.1073/pnas.2105646118 

Schwartz, D., Toneva, M., & Wehbe, L. (2019). Inducing brain-relevant bias in natural 

language processing models. In H. Wallach, H. Larochelle, A. Beygelzimer, F. 

d\textquotesingle Alché-Buc, E. Fox, & R. Garnett (Eds.), Advances in Neural 

Information Processing Systems 32 (pp. 14123–14133). Curran Associates, Inc. 

Tenney, I., Das, D., & Pavlick, E. (2019). BERT Rediscovers the Classical NLP Pipeline. 

In arXiv [cs.CL]. arXiv. http://arxiv.org/abs/1905.05950 

Toneva, M., & Wehbe, L. (2019, May 28). Interpreting and improving natural-language 

processing (in machines) with natural language-processing (in the brain). 33rd 

Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, 

Canada. http://arxiv.org/abs/1905.11833 

Wolf, T., Debut, L., Sanh, V., Chaumond, J., Delangue, C., Moi, A., Cistac, P., Rault, T., 

Louf, R., Funtowicz, M., Davison, J., Shleifer, S., von Platen, P., Ma, C., Jernite, Y., 

Plu, J., Xu, C., Le Scao, T., Gugger, S., … Rush, A. (2020). Transformers: State-of-

the-Art Natural Language Processing. Proceedings of the 2020 Conference on 

Empirical Methods in Natural Language Processing: System Demonstrations, 38–

45. 

Yamins, D. L., & DiCarlo, J. J. (2016). Using goal-driven deep learning models to understand 

sensory cortex. Nature neuroscience, 19(3), 356-365. 

Yang, X., Li, H., Lin, N., Zhang, X., Wang, Y., Zhang, Y., Zhang, Q., Zuo, X., & Yang, Y. 

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 11, 2022. ; https://doi.org/10.1101/2022.07.11.499562doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.11.499562
http://creativecommons.org/licenses/by-nd/4.0/


(2019). Uncovering cortical activations of discourse comprehension and their 

overlaps with common large-scale neural networks. In NeuroImage (Vol. 203, p. 

116200). https://doi.org/10.1016/j.neuroimage.2019.116200 

Yang, Z., Dai, Z., Yang, Y., Carbonell, J., Salakhutdinov, R. R., & Le, Q. V. (2019). 

XLNet: Generalized Autoregressive Pretraining for Language Understanding. In H. 

Wallach, H. Larochelle, A. Beygelzimer, F. d\textquotesingle Alché-Buc, E. Fox, & 

R. Garnett (Eds.), Advances in Neural Information Processing Systems (Vol. 32). 

Curran Associates, Inc. 

https://proceedings.neurips.cc/paper/2019/file/dc6a7e655d7e5840e66733e9ee67

cc69-Paper.pdf 

 

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 11, 2022. ; https://doi.org/10.1101/2022.07.11.499562doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.11.499562
http://creativecommons.org/licenses/by-nd/4.0/

