Methods in Cognitive Neuroscience
NEU 502B — Neuroscience: From Molecules to Systems to Behavior
Princeton University, Spring 2024
Time: M/W 1:00–4:00 pm
Location: PNI A03
Instructor: Sam Nastase (snastase@princeton.edu)
AI: Declan Campbell (idcampbell@princeton.edu)
Syllabus: Syllabus
GitHub: GitHub
Scratch: Scratch
This lab course covers the methodological landscape of human cognitive neuroscience research. Students will learn the fundamentals of experimental design, data collection, preprocessing, and statistical analysis for fMRI, EEG/MEG, and ECoG, with an emphasis on best practices in reproducible neuroscience. Lectures will set the conceptual foundation for interactive, hands-on lab work using Jupyter notebooks. Advanced topics include multivariate pattern analysis (MVPA), representational similarity analysis (RSA), functional connectivity, intersubject correlation (ISC) analysis, and regularized encoding models. Students will be expected to design, analyze, and write up an fMRI experiment as a final project.
Lecture schedule
Date | Topic | Slides/code | Homework | Optional reading |
---|---|---|---|---|
M 1/29 | Introduction and computing tools; MR physics | Slides Code | Logothetis et al., 2001 Buxton, 2013 | |
W 1/31 | Biological basis of BOLD | Slides Code | Ogawa et al., 1992 Bandettini et al., 1992 Kwong et al., 1992 | |
M 2/5 | fMRI experimental design and confounds Homework 1 (due 2/14) | Slides Code | Homework 1 | Boynton et al., 1996 Dale & Buckner, 1997 Power et al., 2012 |
W 2/7 | fMRI preprocessing and subject-level modeling (GLM) | Slides Code | Friston et al., 1994 Lindquist, 2008 Esteban et al., 2019 | |
M 2/12 | Group-level analysis and correction for multiple tests | Slides Code | Nichols & Holmes, 2002 Eklund et al., 2016 | |
W 2/14 | Best practices in reproducible neuroimaging Homework 2 (due 2/26) | Slides Code | Homework 2 | Carp, 2012 Nichols et al., 2017 Poldrack et al., 2019 |
M 2/19 | Multivariate pattern analysis (MVPA) | Slides Code | Haxby et al., 2001 Norman et al., 2006 Tong & Pratte, 2012 | |
W 2/21 | Representational similarity analysis (RSA) and searchlights | Slides Code | Edelman, 1998 Kriegeskorte et al., 2006 Kriegeskorte et al., 2008 | |
M 2/26 | Class canceled | |||
W 2/28 | Class canceled | |||
M 3/4 | Voxelwise encoding models Homework 3 (due 3/20) | Slides Code | Homework 3 | Mitchell et al., 2008 Naselaris et al., 2011 Huth et al., 2016 |
M 3/6 | Naturalistic design, intersubject correlation, hyperalignment; Structural and functional connectivity | Slides Code | Hasson et al., 2004 Nastase et al., 2019 Nastase et al., 2020 Haxby et al., 2020 Bullmore & Sporns, 2009 Biswal et al., 2010 Yeo et al., 2011 | |
M 3/11 | No class (spring recess) | |||
W 3/13 | No class (spring recess) | |||
M 3/18 | EEG preprocessing Homework 4 (due 3/27) | Slides Code | Homework 4 | Buzsáki et al., 2012 Gramfort et al., 2013 |
W 3/20 | EEG ERP and time-frequency analysis; Project proposal presentations | Slides Code | Hillyard & Kutas, 1983 Kutas & Federmeier, 2010 Fries, 2015 Cohen, 2017 | |
M 3/25 | Experimental design in PsychoPy | Peirce et al., 2019 | ||
W 3/27 | fMRI data collection | |||
M 4/1 | fMRI data collection | |||
W 4/3 | fMRI data collection Homework 5 (due 4/15) | Homework 5 | ||
M 4/8 | EEG facility demonstration | |||
W 4/10 | ECoG preprocessing and analysis | Slides Code | Mukamel et al., 2012 Parvizi & Kastner, 2018 | |
M 4/15 | Parallel distributed processing | Code | Rumelhart et al., 1986 McClelland et al., 2010 Richards et al., 2019 Hasson et al., 2020 | |
W 4/17 | Deep learning: vision | Slides Code | Kriegeskorte et al., 2015 Yamins & DiCarlo, 2016 Lindsay, 2021 | |
M 4/22 | Progress report presentations | |||
W 4/24 | Deep learning: language | Slides Code | Manning et al., 2020 Schrimpf et al., 2021 Goldstein et al., 2022 | |
M 5/6 | No class (final written report due) |
The content of this course is inspired by related courses designed by Leigh Nystrom, Jonathan Cohen, Jody Culham, and Jim Haxby.
Supplementary reading
Rokem, A., & Yarkoni, T. (2024). Data Science for Neuroimaging: An Introduction. Princeton University Press. link
Huettel, S. A., Song, A. W., & McCarthy, G. (2014). Functional Magnetic Resonance Imaging (3rd Ed.). Sinauer Associates. link
Poldrack, R. A., Mumford, J. A., & Nichols, T. E. (2011). Handbook of Functional MRI Data Analysis. Cambridge University Press. DOI
Bandettini, P. A. (2020). fMRI. MIT Press. link
Luck, S. J. (2014). An Introduction to the Event-Related Potential Technique (2nd ed.). MIT Press. link
McClelland, J. L. (2015). Explorations in Parallel Distributed Processing: A Handbook of Models, Programs, and Exercises (2nd ed.). MIT Press. PDF
Duvernoy, H. M. (1999). The Human Brain: Surface, Three-Dimensional Sectional Anatomy with MRI, and Blood Supply (2nd ed.). Springer. DOI