Methods in Cognitive Neuroscience

NEU 502B — Neuroscience: From Molecules to Systems to Behavior
Princeton University, Spring 2024
Time: M/W 1:00–4:00 pm
Location: PNI A03
Instructor: Sam Nastase (snastase@princeton.edu)
AI: Declan Campbell (idcampbell@princeton.edu)
Syllabus: Syllabus
GitHub: GitHub
Scratch: Scratch


This lab course covers the methodological landscape of human cognitive neuroscience research. Students will learn the fundamentals of experimental design, data collection, preprocessing, and statistical analysis for fMRI, EEG/MEG, and ECoG, with an emphasis on best practices in reproducible neuroscience. Lectures will set the conceptual foundation for interactive, hands-on lab work using Jupyter notebooks. Advanced topics include multivariate pattern analysis (MVPA), representational similarity analysis (RSA), functional connectivity, intersubject correlation (ISC) analysis, and regularized encoding models. Students will be expected to design, analyze, and write up an fMRI experiment as a final project.


Lecture schedule

DateTopicSlides/codeHomeworkOptional reading
M 1/29Introduction and computing tools; MR physicsSlides Code Logothetis et al., 2001 Buxton, 2013
W 1/31Biological basis of BOLDSlides Code Ogawa et al., 1992 Bandettini et al., 1992 Kwong et al., 1992
M 2/5fMRI experimental design and confounds
Homework 1 (due 2/14)
Slides CodeHomework 1Boynton et al., 1996 Dale & Buckner, 1997 Power et al., 2012
W 2/7fMRI preprocessing and subject-level modeling (GLM)Slides Code Friston et al., 1994 Lindquist, 2008 Esteban et al., 2019
M 2/12Group-level analysis and correction for multiple testsSlides Code Nichols & Holmes, 2002 Eklund et al., 2016
W 2/14Best practices in reproducible neuroimaging
Homework 2 (due 2/26)
Slides CodeHomework 2Carp, 2012 Nichols et al., 2017 Poldrack et al., 2019
M 2/19Multivariate pattern analysis (MVPA)Slides Code Haxby et al., 2001 Norman et al., 2006 Tong & Pratte, 2012
W 2/21Representational similarity analysis (RSA) and searchlightsSlides Code Edelman, 1998 Kriegeskorte et al., 2006 Kriegeskorte et al., 2008
M 2/26Voxelwise encoding models
Homework 3 (due 3/6)
Class canceled
   
W 2/28Class canceled   
M 3/4Voxelwise encoding models
Homework 3 (due 3/20)
Slides CodeHomework 3Mitchell et al., 2008 Naselaris et al., 2011 Huth et al., 2016
M 3/6Naturalistic design, intersubject correlation, hyperalignment;
Structural and functional connectivity
Slides Code Hasson et al., 2004 Nastase et al., 2019 Nastase et al., 2020 Haxby et al., 2020
Bullmore & Sporns, 2009 Biswal et al., 2010 Yeo et al., 2011
M 3/11No class (spring recess)   
W 3/13No class (spring recess)   
M 3/18EEG preprocessing
Homework 4 (due 3/27)
Slides CodeHomework 4Buzsáki et al., 2012 Gramfort et al., 2013
W 3/20EEG ERP and time-frequency analysis;
Project proposal presentations
Slides Code Hillyard & Kutas, 1983 Kutas & Federmeier, 2010 Fries, 2015 Cohen, 2017
M 3/25Experimental design in PsychoPy  Peirce et al., 2019
W 3/27fMRI data collection   
M 4/1fMRI data collection   
W 4/3fMRI data collection
Homework 5 (due 4/15)
 Homework 5 
M 4/8EEG facility demonstration   
W 4/10ECoG preprocessing and analysisSlides Code Mukamel et al., 2012 Parvizi & Kastner, 2018
M 4/15Parallel distributed processing
Homework 6 (due 4/24)
Code Rumelhart et al., 1986 McClelland et al., 2010 Richards et al., 2019 Hasson et al., 2020
W 4/17Deep learning: visionSlides Code Kriegeskorte et al., 2015 Yamins & DiCarlo, 2016 Lindsay, 2021
M 4/22Progress report presentations   
W 4/24Deep learning: languageSlides Code Manning et al., 2020 Schrimpf et al., 2021 Goldstein et al., 2022
M 5/6No class (final written report due)   

The content of this course is inspired by related courses designed by Leigh Nystrom, Jonathan Cohen, Jody Culham, and Jim Haxby.


Supplementary reading

Rokem, A., & Yarkoni, T. (2024). Data Science for Neuroimaging: An Introduction. Princeton University Press. link

Huettel, S. A., Song, A. W., & McCarthy, G. (2014). Functional Magnetic Resonance Imaging (3rd Ed.). Sinauer Associates. link

Poldrack, R. A., Mumford, J. A., & Nichols, T. E. (2011). Handbook of Functional MRI Data Analysis. Cambridge University Press. DOI

Bandettini, P. A. (2020). fMRI. MIT Press. link

Luck, S. J. (2014). An Introduction to the Event-Related Potential Technique (2nd ed.). MIT Press. link

McClelland, J. L. (2015). Explorations in Parallel Distributed Processing: A Handbook of Models, Programs, and Exercises (2nd ed.). MIT Press. PDF

Duvernoy, H. M. (1999). The Human Brain: Surface, Three-Dimensional Sectional Anatomy with MRI, and Blood Supply (2nd ed.). Springer. DOI