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Large language models without grounding 
recover non-sensorimotor but not 
sensorimotor features of human concepts
 

Qihui Xu    1,7 , Yingying Peng2,7, Samuel A. Nastase    3, Martin Chodorow    4,5, 
Minghua Wu2 & Ping Li2,6 

To what extent can language give rise to complex conceptual 
representation? Is multisensory experience essential? Recent large language 
models (LLMs) challenge the necessity of grounding for concept formation: 
whether LLMs without grounding nevertheless exhibit human-like 
representations. Here we compare multidimensional representations of 
~4,442 lexical concepts between humans (the Glasgow Norms1, N = 829; and 
the Lancaster Norms2, N = 3,500) and state-of-the-art LLMs with and without 
visual learning, across non-sensorimotor, sensory and motor domains.  
We found that (1) the similarity between model and human representations 
decreases from non-sensorimotor to sensory domains and is minimal in 
motor domains, indicating a systematic divergence, and (2) models with 
visual learning exhibit enhanced similarity with human representations in 
visual-related dimensions. These results highlight the potential limitations 
of language in isolation for LLMs and that the integration of diverse 
modalities can potentially enhance alignment with human conceptual 
representation.

Imagine learning about the concept of ‘flower’ without ever smell-
ing a rose, touching the petals of a daisy or walking through a field 
of wildflowers. Can we truly represent the concept ‘flower’ in all its 
richness without sensorimotor experiences? This question invokes a 
longstanding debate about the interplay between physical experience 
and conceptual representation. On the one hand, theories of grounded 
cognition posit that our senses are our gateways to knowledge3; the 
physical experience of ‘flowers’ is integral to how we represent and 
process them. On the other hand, research with disembodied artificial 
neural network models4–6 and congenitally blind and partially sighted 
people7–10 show that learners can form conceptually rich representa-
tions from language alone, independent of direct sensory experience. 
For example, studies show that individuals born with limited vision 

can represent and respond to colour concepts similarly to those who 
can see8–10. When sensorimotor input is absent, to what extent can lan-
guage alone inform our conceptual representation of the world? How 
indispensable is bodily experience in shaping our conceptual world?

Disentangling the various sources for conceptual formation is 
challenging. Although studies involving artificial models or blind and 
partially sighted people have provided valuable insights, they have 
several limitations. First, they often overlook the multidimensional 
nature of conceptual representation. Our representation of concepts 
is extensive and complex, encompassing areas not directly tied to sen-
sorimotor experiences, such as emotional arousal and valence linked 
to the concept, as well as the direct sensations and actions encoun-
tered in connection with it11,12. For instance, processing the concept of 
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the ‘non-sensorimotor’ dimensions are devoid of embodiment—a 
topic that remains widely explored in current literature (for example, 
refs. 37,38). For example, questions that explicitly ask about specific 
sensory or motor experiences—such as how one would experience 
the concept ‘flower’ through smelling—are categorized under sen-
sorimotor domains because they directly tap into modality-specific 
(that is, the typical senses) and effector-specific (that is, the typical 
action effectors) bodily experiences. By contrast, questions that do 
not directly specify particular sensorimotor experiences—such as 
emotional arousal about the concept ‘flower’—are categorized as 
non-sensorimotor, though they could relate to bodily states (see the 
close relation between emotion and interoception in ref. 36). Despite 
this potential connection, previous literature shows that compared 
with non-sensorimotor dimensions such as concreteness, specific 
sensory ratings are more effective in facilitating lexical semantic pro-
cessing39. The second research question is the potential value of addi-
tional visual inputs for concept formation in LLMs trained with both 
language and visual input modalities, compared with those trained 
solely within the language domain. To address this research question, 
we analysed whether the additional visual inputs provided to LLMs 
yield stronger alignment with humans on visual-related dimensions. 
Finally, we validated the response of the LLMs to ensure the validity of 
our results (see Supplementary Information, section 7.3, for discus-
sion on the importance of validation). We report two key findings:  
(1) the similarity between LLMs and human representations decreased 
from non-sensorimotor to sensory domains and was minimal in motor 
domains, and (2) the models incorporating visual inputs exhibited 
enhanced similarity with human representations in vision-related 
dimensions. These findings suggest that learning solely within the 
language domain substantially recovers non-sensorimotor aspects 
of conceptual representations yet remains impoverished in sensori-
motor aspects, particularly along motor dimensions. Furthermore, 
extending experience into the visual domain is associated with LLM’s 
improved alignment with human representations in both visual and 
related dimensions such as imageability and haptic features, suggest-
ing potential knowledge transfer through multimodal integration.

Results
We collected conceptual word ratings from LLMs (that is, ChatGPT 
models: GPT-3.5 and GPT-4; Google LLMs: PaLM and Gemini) and 
compared them with ratings generated by humans from the Glasgow1  
and Lancaster Norms2 (see Methods for further details and Supple-
mentary Information, section 7.1, on how word rating tasks capture  
key aspects of conceptual representation). The model prompt and 
design (Fig. 1b) for LLMs was standardized to match the instruc-
tions given to human participants, maintaining consistency with 
human-participant data collection. Each LLM was separately run for 
four rounds to ensure reliability (see Supplementary Information, 
section 1, for the agreement between these rounds).

Two common practices for measuring similarity were used to eval-
uate LLM versus human similarity - dimension-wise correlations and 
representational similarity analysis (RSA) (‘Model–human alignment 
varies across domains’ section). These measures enable the evaluation 
of LLM–human similarity from several angles: the strength with which 
a lexical concept is rated within each individual dimension, and how 
different lexical concepts are geometrically organized across dimen-
sions. Next, we explored if the additional visual inputs provided to LLMs 
predict their alignment with humans (‘Linking additional visual training 
to model–human alignment’ section). We then performed two second-
ary analyses to substantiate the correlations found between human 
and model ratings (‘Validation of the results’ section). Given ongoing 
debates regarding the distinct roles of grounding in concrete versus 
abstract concepts40,41, we assessed the potential influence of word 
concreteness on our primary findings. To ensure the validity of LLMs 
as cognitive models42, we adopted standard validation techniques from 

‘flower’ may evoke not only the object ‘flower’ itself but also the visual 
perceptions of colours and shapes, the actions of touching the flower 
by hand and smelling it with the nose, its associated scents, textures, 
emotions and memories. Second, the limited scope of words tested, 
such as colour words (for example, ref. 9) or object words (for example, 
ref. 5) only, restricts external validity, failing to capture the breadth 
of concepts encountered in daily life, which encompasses not only 
objects and colour words but also action verbs, abstract concepts 
and more10,13,14. Moreover, there can be potential knowledge trans-
fer across domains, which poses challenges for human-participant 
research in achieving rigorous control over the diverse domains  
of resources that may contribute to conceptual representation.  
Even without visual input, individuals can tap into other sensory  
channels such as touch and internal sensations, which have been 
shown to correlate with visual knowledge2. Therefore, to better  
distinguish between language-derived and sensorimotor-derived 
sources, it is crucial to consider a broad range of concept words that 
span a wide and systematic spectrum of conceptual representations 
(from non-sensorimotor aspects to sensory and motor aspects).

Recent advances in large language models (LLMs) offer a  
unique avenue to test the extent to which language alone can give  
rise to complex concepts15–17. LLMs have enabled us to (1) estimate  
what kinds of structure (and how much) can ultimately be extracted 
from large volumes of language alone18–20 and (2) examine how dif-
ferent input modalities (for example, text versus images) influence 
learning processes15,16. Current LLMs have been trained on massive 
amounts of data, either constrained to the language domain (that is, 
large-scale text data as in GPT-3.5 and PaLM) or incorporating language 
and visual input (for example, GPT-4 and Gemini). Despite these lim-
ited input modalities, these models exhibit remarkably human-like 
performance in various cognitive tasks6,21–23. In the same way that 
LLMs demonstrate the feasibility of learning syntactic structure from 
surface-level language exposure alone24,25, they may also have the 
capability of learning physical, grounded features of the world from 
language alone26–28. For example, some have argued that language 
itself can act as a surrogate ‘body’ for these models, reminiscent of the 
largely conceptualized and ungrounded colour knowledge in blind and 
partially sighted individuals4,6. This perspective aligns with previous 
research emphasizing the important role of language in providing rich 
cognitive and perceptual resources29,30. By contrast, others believe that 
multimodal experiences are essential for both humans and artificial 
models to grasp concepts more efficiently16,31,32. Unlike current LLMs 
such as GPT-3, which rely on vast amounts of text20—equivalent to 
20,000 years of human reading33—real-world, interactive experiences 
may offer richer, more interconnected conceptual representations that 
facilitate knowledge transfer across domains, potentially reducing  
the need for such extensive linguistic input in model training.

The above theoretical debates motivate us in this study to inves-
tigate two research questions. The first research question is which 
aspects of human conceptual representation can be recovered by 
ungrounded state-of-the-art LLMs and which cannot. To address this 
question, we compared similarity of representations across ~4,442 
word concepts between humans and two state-of-the-art LLM fami-
lies (Fig. 1a) from OpenAI (GPT-3.5 and GPT-4) and Google (PaLM and 
Gemini), across a range of dimensions, spanning non-sensorimotor, 
sensory and motor domains. The domains were based on categories 
established in refs. 1,2, where each domain consists of several dimen-
sions (see Table 1 for definitions for each dimension). These dimensions 
provide comprehensive coverage for understanding the spectrum of 
human lexical–conceptual processing explored in previous studies 
(for example, refs. 34–36), from socio-emotional aspects and abstract 
mental imagery, to direct bodily experience (Fig. 1c). Importantly, our 
classification into ‘non-sensorimotor’ and ‘sensorimotor’ domains 
is based on whether the measures directly assess specific sensori-
motor experiences. This operational distinction does not imply that 
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human participant research1 for dimensions with strong model–human 
correlations. All P values reported below were corrected for multiple 
comparisons by controlling the false discovery rate (FDR)43 (Methods).

Model–human alignment varies across domains
Dimension-wise correlations. To assess the similarity of model 
word ratings to human word ratings across each dimension, we calcu-
lated the Spearman rank correlation between model-generated  
and human-generated ratings at both the aggregate and individual 
levels. For the aggregated analyses, the model-generated ratings of 
each word were aggregated by averaging across the four rounds of each 
LLM, and human-generated ratings were averaged across individuals.

As shown in Fig. 2a,b, ChatGPT and Google LLMs exhibit strong 
correlations (Rs > 0.50) (see Supplementary Table 3 for additional 
statistics) with human ratings across most the non-sensorimotor 
dimensions. However, they show significantly weaker correlations 
in sensory and motor dimensions. This observation is supported by 
Mann–Whitney U tests comparing model–human similarities between 
the sensorimotor and the non-sensorimotor dimensions (GPT-4: 
U(N1 = 7, N2 = 11) = 65.00, P = 0.018, rank-biserial correlation (rrb) = 0.69; 
GPT-3.5: U(N1 = 7, N2 = 11) = 67.00, P = 0.010, rrb = 0.74; Gemini: U(N1 = 7, 
N2 = 11) = 77.00, P < 0.001, rrb = 0.10; PaLM: U(N1 = 7, N2 = 11) = 76.00, 
P < 0.001, rrb = 0.97).

We undertook an individual-level analysis to examine the 
similarity between human and model conceptual representations  
while considering individual variability. We constructed pairwise 
Spearman correlations for each pair of individual human participants 
(human–human) and each individual run of a model and each indi-
vidual human participant (model–human). This process resulted in five  
distributions: human–human, GPT3.5–human, GPT4–human, 
PaLM–human and Gemini–human pairwise correlations. Using the 
human–human correlations as a benchmark for inter-person reliability,  
we asked: Are the responses from an individual model more or less 
similar to those of an individual human, as compared with the simi-
larity between one human and another? Independent-sample t-tests 
assessed whether the distributions of model–human similarities signifi-
cantly differ from human–human similarities, and Cohen’s d was used  
to quantify the standardized difference between the two (see  
Supplementary Table 4 for additional statistics). A negative d value indi-
cates that the model–human similarities are greater than the human– 
human similarities for that particular dimension and model.

Figure 3 presents model–human similarity distributions. The 
distributions marked with fill-in colours indicate comparisons where 
there is no evidence that a model’s responses to a human are less similar 
than one human’s responses to another human. The count of these 
marked distributions decreased from the non-sensorimotor domain 

Human knowledge representation:
embodiment required?  

Human Large language models

Language

Input Input

versus

Language

Arousal is a measure of excitement versus calmness. A word is AROUSING if it 
makes you feel stimulated, excited, frenzied, jittery or wide awake. A word is 

UNAROUSING if it makes you feel relaxed, calm, sluggish, dull or sleepy. 
Please indicate how arousing human beings think each word is on a 9-point 
scale of VERY UNAROUSING (1) to VERY AROUSING (9), with the midpoint 

representing moderate arousal. Please respond using this format: word – rating

Foxy 
Advisor
Habit
Hoof

Humorous
Unit (item) 

Swing

Foxy – 8
Advisor – 3
Habit – 3
Hoof – 2

Humorous – 6
Unit (item) – 2

Swing – 6

Introduction

Word list

Response collection

Salience Emotion Mental 
visualization Sensory Motor

Non-sensorimotor Sensorimotor

What semantic
size do you think is

associated with
‘flower’?   

How imageable
do you think ‘flower’ is?  

How much do
you experience ‘flower’ by

smelling? 

How much do
you experience ‘flower’ using

actions from torso?

How arousing
do you think ‘flower’ is?   

a b

c

Fig. 1 | Overview. a, A schematic depiction of the research question and 
approach. This study aims to investigate the extent to which human conceptual 
representation requires grounding. Icons from Flaticon.com77. b, A schematic 
of the LLM testing procedure. The model prompt and design were aligned 
with the instructions for human participants, which started with explaining 
the dimension and listing the words to be rated. The LLMs would then provide 

ratings per word as required. c, The key domains studied span non-sensorimotor, 
sensory and motor domains, with specific example questions provided for each 
respective domain. The classification into ‘non-sensorimotor’ and ‘sensorimotor’ 
domains is based on whether the measures directly assess sensorimotor 
experiences (see above for more detailed information).
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dimensions (16 marked model–human distributions out of 28 model–
human distributions; 16/12) to the sensory (4/20) and further decreased 
in the motor dimensions (2/18), χ2(2) = 15.49, P < 0.001. Within the 
non-sensorimotor domain’s seven dimensions, there is no credible 
evidence showing that GPT-4’s model–human similarity distribution 
was significantly lower than the human–human distribution in all seven 
dimensions. For GPT-3.5, this held true in four dimensions, for Gemini 
in three dimensions and for PaLM in two dimensions. However, within  
the sensory domain’s six dimensions, the count decreased to four for 
GPT-4 and to zero for all other models. Within the motor domain’s 
five dimensions, the count further dropped to two for GPT-4  
and remained at zero for the other models. These individual-level 
analyses reveal a growing divergence between models and humans 
from non-sensorimotor to sensorimotor dimensions.

RSA. While the above correlations capture model–human similar-
ity over all words in each separate dimension, such dimension-wise  
analyses might overlook how different dimensions may jointly con-
tribute to a word’s overall conceptual representation and how differ-
ent words are interconnected. For example, the concepts of ‘pasta’ 
and ‘roses’ might both receive high ratings for their olfactory quali-
ties. However, ‘pasta’ is considered more similar to ‘noodles’ than 
to ‘roses’, not only because of its smell but also because of its visual 
appearance and taste. To address this issue, we adopt the RSA44 to fully 
capture the complexities of word representations, where dimensions 

such as smell and visual appearance are considered jointly as part of a 
high-dimensional representation for each word.

RSA allows us to evaluate and compare how the geometric organi-
zation of concept words is aligned between models and humans across 
the non-sensorimotor, sensory and motor domains. To implement  
RSA (Fig. 4a), we represented each word as a vector separately within 
the non-sensorimotor, sensory and motor domains. The elements of 
these vectors were derived from the ratings of specific dimensions 
belonging to each respective domain. For example, the sensory vector 
for ‘pasta’ consists of ratings from six sensory dimensions (for example, 
haptic and auditory). We then constructed representational dissimi-
larity matrices (RDMs) by calculating the Euclidean distance between 
word vectors for each model and individual human, capturing word 
similarity relationships (for example, ‘pasta’ and ‘noodles’ are more 
similar than ‘pasta’ and ‘roses’). The similarity between RDMs of each 
model and each individual human was calculated via the Spearman rank 
correlation. We thus obtained a distribution of similarities between  
all human participants and each model separately on each domain.  
We conducted two mixed-effects analyses of variance (ANOVAs) to  
statistically evaluate the model–human similarities across three 
domains, specifically to determine whether these similarities 
were lower in the sensory/motor domains compared with the non- 
sensorimotor domain. These analyses were performed separately  
for the ChatGPTs and Google LLMs, considering ‘domain’ and ‘model’ 
as two distinct factors.

For the ChatGPT models, a significant main effect of domain  
was observed (F(2, 1,704) = 729.72,P < 0.001,η2

p = 0.46 ). Both the 
sensory and motor domains showed significantly lower similarities 
compared with the non-sensorimotor domain. Specifically, the sensory 
domain had lower similarities than the non-sensorimotor domain  
(t(1,526.5) = −2.93, P = 0.004, d = −0.13, 95% confidence interval (CI)  
−0.03 to −0.01), and the motor domain was significantly lower than the 
non-sensorimotor domain (t(1,731.8) = −44.49, P < 0.001, d = −1.87,  
95% CI −0.22 to −0.20). In addition, similarities in the motor domain 
were significantly lower than those in the sensory domain (t(1,721.0) =  
−33.18, P < 0.001, d = −1.58, 95% CI −0.21 to −0.19).

Google LLMs revealed similar results: a significant main effect of 
domain was observed (F(2, 1,421) = 1,626.84,P < 0.001,η2

p = 0.70 ). 
Both the sensory and motor domains showed significantly lower simi-
larities compared with the non-sensorimotor domain. Specifically, the 
sensory domain had lower similarities than the non-sensorimotor 
domain (t(892.4) = −49.22, P < 0.001, d = −2.46, 95% CI −0.24 to −0.23), 
and the motor domain was significantly lower than the non- 
sensorimotor domain (t(1,056.2) = −47.05, P < 0.001, d = −2.24, 95% CI 
−0.23 to −0.21). Similarities in the motor domain were not significantly 
different from those in the sensory domain (t(1,178.8) = 1.81, P = 0.077, 
d = 0.11, 95% CI −0.00 to 0.02).

These results suggest that LLMs’ conceptual representations  
and organizations of words align most closely with human representa-
tions in the non-sensorimotor domain, while alignments are weaker 
in the sensory domains and minimal in the motor domains. These 
observations are in line with earlier analyses, highlighting LLMs’ pro-
gressively diminishing effectiveness in recovering human conceptual 
representations when they move towards more sensorimotor-related 
aspects of the representations (see Supplementary Table 5 for the 
descriptive statistics).

Linking additional visual training to model–human alignment
The increased disparity between model and human representations  
for more sensorimotor dimensions of conceptual representations 
suggests that grounding experience may be necessary to achieve 
human-like conceptual representation. Given this possibility, we pose 
a related question: What role do additional visual inputs play in con-
ceptual formation within LLMs primarily trained on both language 
and visual inputs (for example, GPT-4 and Gemini, henceforth visual 

Table 1 | Definitions of each dimension in Glasgow and 
Lancaster Norms

Norms Domain Dimension Definition

Glasgow Non-sensorimotor Valence Value or worth; 
representing 
something consi-
dered good or bad

Dominance The degree of control 
a word makes you feel

Arousal Excitement versus 
calmness

Size Dimensions, 
magnitude or extent 
of an object or 
concept that a word 
refers to

Gender How strongly its 
meaning is associated 
with male or female 
behaviour

Concreteness A measure of how 
concrete or abstract 
something is

Imageability How easy or difficult 
something is to 
imagine

Lancaster Sensory Haptic, auditory, 
olfactory, 
interoceptive, 
visual, gustatory

How much do you 
experience everyday 
concepts using six 
different perceptual 
senses

Motor Foot/leg, hand/
arm, mouth/
throat, torso, head 
excluding mouth

How much do you 
experience everyday 
concepts using 
actions from five 
different parts of the 
body

The two norms have incorporated different numbers of words/concepts in human judgments 
with approximately 4/5 of the Glasgow normed words overlapping with those in the 
Lancaster Norms (see Methods for details).
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LLMs) compared with those that have received input from only a single  
modality—language (for example, GPT-3.5 and PaLM, henceforth 
text-only LLMs)? In other words, is visual learning associated with  
the alignment of multimodal LLMs with human representations  
of sensorimotor concepts, and if so, how? Available information indi-
cates that GPT-4 was pretrained with text and images45, while Gemini 

was pretrained to integrate language data with a diverse array of  
visual inputs, including natural images, charts, screenshots, PDFs  
and videos46. By contrast, GPT-3.5 (ref. 47) and PaLM2 (ref. 48) were 
pretrained exclusively within the language domain.

Isolating the impact of visual training is challenging owing to 
limited access to the details of training in these state-of-the-art LLMs. 
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Fig. 2 | Aggregated results. a,b, Spearman correlations between the human-
generated and LLM-generated ratings for all analysed words. The x axis 
represents the Spearman correlation coefficients between the aggregated word 
ratings generated by LLMs including GPT-3.5, GPT-4 (a), PaLM and Gemini (b) 
and the corresponding human ratings. The y axis lists the different dimensions 
being evaluated, along the non-sensorimotor, sensory and motor dimensions. 
The error bars depict the 95% confidence intervals, estimated by bootstrap 
resampling 1,000 samples of word ratings from aggregated human participants 

and LLMs. The central value represents the estimated correlation coefficient 
between the lower and upper confidence bounds. c, Radar plots showing the 
aggregated ratings of human, ChatGPT (GPT-3.5 and GPT-4) and Google LLMs 
(PaLM and Gemini) on each dimension for two individual concepts: ‘flower’  
(a concrete word) and ‘justice’ (an abstract word). The numbers along the radial 
axis denote the rating ranges for these dimensions. Additional examples are 
provided in Supplementary Figs. 2 and 3.
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Fig. 3 | Individual analysis. a–c, The results for the individual-level pairwise 
correlation analysis for each dimension in the non-sensorimotor (a), sensory 
(b) and motor (c) domains. This analysis aims to examine the similarity between 
human and model conceptual representations while considering individual 
variability. The x axis represents the Spearman correlation coefficient, while the y 
axis shows the kernel density estimation of the correlation distributions. Notably, 
in the subplots for the motor dimensions, the y axis displays higher density peaks 
due to PaLM yielding model–human similarities clustered around zero. Cohen’s 
d is reported for each dimension to quantify the standardized distance between 
the human–human and model–human correlation distributions. The d values for 
GPT-3.5, GPT-4, PaLM and Gemini models are presented between forward slashes 
(‘/’), respectively. A negative d value, highlighted in purple, indicates that the 

model–human similarities are greater than the human–human similarities for 
that particular dimension and model. The distribution curves for human–human 
pairwise similarity, serving as benchmarks, are visually distinguished by the 
increased line thickness. When the colours are filled in model–human similarity 
distribution curves, they indicate that there is no credible evidence those model–
human similarities are lower than human–human similarities (non-sensorimotor: 
16 distributions out of 28 model–human distributions,16/12; sensory: 4/20; 
motor: 2/18). These filled-in curves highlight the dimensions and models where 
the model-generated ratings align closely with human ratings at the individual 
level. Here, the P values were assessed with two-sided t-tests and corrected for 
multiple comparisons using the FDR.
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Fig. 4 | RSA. a, A schematic of the RSA: for each human rater and language model 
(GPT-3.5, GPT-4, PaLM and Gemini), the words were represented as separate 
vectors for the non-sensorimotor, sensory and motor domains. Icons from 
Flaticon.com77. The elements of these word vectors were derived from the ratings 
generated by humans or models for the dimensions belonging to each respective 
domain. The RDMs were then constructed by calculating the Euclidean distance 
between every pair of word rating vectors within each domain. Spearman 
correlations between these RDMs quantify the alignment of representational 
geometries, enabling comparison between human and model representations. 
b, Distributions of model–human RDM similarities for ChatGPT models (GPT-3.5 
and GPT-4). The distributions of Spearman correlation coefficients for RDMs 
constructed upon individual human ratings and ChatGPT ratings for the same 
words across non-sensorimotor, sensory and motor domains are shown. The x 

axis represents Spearman correlation coefficients and y axis denotes the density 
of these coefficients. c, The distributions of model–human RDM similarities for 
Google LLMs (PaLM and Gemini). Similar to b, the distributions for human and 
Google LLM RDM alignment for the same words across the same three domains 
are displayed. Both b and c illustrate a trend that model–human RDM alignments 
decrease (with RDM similarities centralizing around smaller values) from non-
sensorimotor to sensory and especially motor domains. d–f, Example RDMs: 
each RDM, constructed using 25 words, reflects pairwise similarities either based 
on human or GPT-4 ratings across non-sensorimotor (d), sensory (e) and motor 
(f) domains. The distinct patterns could be observed between the human RDM 
and GPT-4 RDM for the motor domain while for the non-sensorimotor domain, 
the human and GPT-4 model RDMs are much more similar.
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Here, we piloted an analysis characterizing a potential association 
between the added visual learning and the difference in model–human 
alignment between visual and text-only LLMs. The rationale underly-
ing this analysis is that if visual learning affects model alignment with 
human conceptual representations, this effect should be particularly 
noticeable in the visual dimension and in dimensions that involve 
some level of visual interpretation, such as imageability, which have 
been identified as having visual components in prior research (see 
refs. 49,50 for reviews). We quantified the visual association strength 
of each dimension by computing the Spearman correlation between 
each dimension and the visual dimension, using human rating data as 
reported in refs. 1,2. Higher absolute-value correlation coefficients 
indicate a stronger association with the visual dimension. For example, 
as illustrated in Fig. 5c, dimensions such as concreteness (Rs = 0.62, 
P < 0.001, 95% CI 0.60 to 0.64) and imageability (Rs = 0.69, P < 0.001, 
95% CI 0.67 to 0.70) are strongly associated with the visual dimension, 
whereas dimensions such as gustatory (Rs = 0.01, P = 0.596, 95% CI 
−0.04 to 0.02) and torso (R = 0.02, P = 0.136, 95% CI −0.01 to 0.05) show 
minimal visual association.

To assess the change of visual LLMs over text-only LLMs in  
their alignment with human representations, we calculated the differ-
ence in model–human correlations (Fisher Z-transformed) between 
visual LLMs and text-only LLMs (GPT-4 versus GPT-3.5 for ChatGPTs 
and Gemini versus PaLM for Google LLMs) for each dimension. A higher 
value on a specific dimension indicates a stronger correlation between 
the visual LLM and human data compared with the text-only LLM for 
that dimension, as shown in Fig. 5a,b on the y axis. We then built sepa-
rate linear regression models for ChatGPTs and Google LLMs, using 
the visual association strength as a predictor of the alignment change 
of the visual LLM over the text-only LLM. The results show that, for 
the ChatGPT models (Fig. 5a), the visual association strength was 
a positive predictor of the alignment change of GPT-4 over GPT-3.5 
(B = 0.99, t(16) = 6.16, P < 0.001, 95% CI 0.65 to 1.33). Approximately 
70% of the variance in the alignment change of GPT-4 over GPT-3.5 
can be explained by the visual association strength of the dimensions 
(R2 = 0.70), which suggests that visual inputs are a major factor in 
improving GPT-4’s ability to align with human conceptual representa-
tions, highlighting the important role of visual learning in this context. 
For Google LLMs (Fig. 5b), the visual association strength also signifi-
cantly positively predicted the alignment change of Gemini over PaLM 
(B = 0.43, t(16) = 2.38, P = 0.033, 95% CI 0.04 to 0.82). Approximately 
26% of the variance in the alignment change of Gemini over PaLM can 
be explained by the visual association strength of the dimensions 
(R2 = 0.26), similarly indicating the role of visual input in capturing 
human-like conceptual representations as seen in the ChatGPT models.

Validation of the results
Controlling for word concreteness. Will the divergence observed 
between LLMs and humans in sensory and motor domains persist 
when accounting for word concreteness? Prior work has suggested that 
LLMs may be capable of capturing the sensorimotor aspects of human 
representations of abstract words, which are purportedly less reliant 
on grounding40,41. To assess the potential influence of word concrete-
ness on our findings, we employed two methods. First, we calculated 
the partial Spearman correlation between human and model ratings, 
controlling for word concreteness. Our analysis revealed a strong simi-
larity (Rs = 0.93, P < 0.001, 95% CI 0.89 to 0.96) between these partial 
correlations and the original correlations reported earlier (Fig. 6a), 
suggesting that the pattern of our results remains even after adjust-
ing for concreteness. Next, we implemented a bin analysis to explore 
variations in model–human correlations across different levels of 
word concreteness. We first sorted the words by concreteness values, 
then divided them into bins of 100 words each to explore variations in 
model–human correlations across different levels of word concrete-
ness. For each bin, we recorded the median concreteness value and the 

corresponding model–human correlations for the words within the 
bin. Therefore, we obtained model–human correlations as a function 
of word concreteness for each model across various dimensions. The 
data were then analysed using a linear regression model, which consid-
ered concreteness values, model and domain as predictors of model–
human correlations (Fisher Z-transformed). This model explained 
approximately 53% of the variance in model–human correlations. 
Our analysis did not identify credible evidence for a significant main 
effect of word concreteness on model–human correlations (Fig. 6b) 
(B = −0.00, t = −0.39, P = 0.785, 95% CI −0.03 to 0.02). Therefore, we 
found no credible evidence that word concreteness is associated with 
the alignment or divergence of models with human conceptual repre-
sentations across non-sensorimotor, sensory and motor domains. That 
said, we did observe interaction effects between concreteness, domain 
and model, suggesting, for example, that model–human correlations 
may be stronger for more concrete words in the sensory domain (see 
Supplementary Information, section 5.4, for further analyses and 
Supplementary Information, section 7.2, for possible interpretations 
of these results).

Validating LLM responses. Because of the critical need for validity in 
LLM applications18,42,51, we adhered to established human test valida-
tion methods1,2. We evaluated the ChatGPTs (GPT-3.5 and GPT-4) and 
Google LLMs (PaLM and Gemini) against a set of alternate norms that 
are related to the Glasgow and Lancaster measures.

For the Glasgow Norms, validation norms include dimensions of 
valence, arousal and dominance from ref. 34, imageability from ref. 52 
and concreteness from ref. 14. For the Lancaster Norms, which lacks 
directly comparable validation norms, we included dimensions that 
are conceptually similar, such as taste and grasp53. In human ratings, 
taste is expected to strongly correlate with the gustatory dimension in 
Lancaster, while grasp shows moderate correlations with the hand/arm 
and haptic dimensions. We selected these validation norms for several 
reasons: (1) they are publicly accessible, (2) they have been widely  
used in human participant studies, lending to their validity and (3) they 
cover dimensions in either the Glasgow or Lancaster Norms where 
models show strong correlations (that is, Rs > 0.6) with human data.

As detailed in Table 2, we first evaluated models’ responses on the 
validation norms, then computed Spearman correlations between 
humans and models for these norms. Subsequently, we calculated 
correlations for model ratings between the original Glasgow/Lancaster 
Norms and the validation norms. We observed that model–human 
correlations based on the validation norms—except for Gemini’s per-
formance on the arousal dimension—closely resembled those obtained 
from the Glasgow/Lancaster Norms. For instance, the correlation 
between human ratings and GPT-3.5 on valence was 0.83 (95% CI 0.82 
to 0.84) in the validation norms, compared with 0.90 (95% CI 0.89 
to 0.90) in the Glasgow Norms. Moreover, the correlation strength 
of ChatGPT ratings between the validation norms and the Glasgow/
Lancaster norms is as high as the correlation strength of human ratings 
across these norm sets. For example, the correlation for GPT-4 ratings 
on the hand/arm dimension between the validation and the Lancaster 
norms was 0.68 (95% CI 0.62 to 0.73), compared with the 0.55 correla-
tion of human ratings across these norms. Given the strong consist-
ency observed across different models and dimensions, these results 
suggest that the main findings largely reflect the models’ capabilities 
rather than reliance on specific prompts (see Supplementary Table 9 
for additional statistics).

Discussion
In this study, we used LLMs to test the limits of conceptual knowledge 
acquisition by quantifying what aspects of human conceptual knowl-
edge can or cannot be recovered solely from the language domain 
of learning or from a combination of language and visual domains. 
We found that learning constrained to the language domain captures 
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human-level conceptual representation in non-sensorimotor dimen-
sions such as valence and emotional arousal but yields impoverished 
representation of sensorimotor knowledge. Our findings extend previ-
ous research on ungrounded artificial neural models4–6 and congenitally 

blind and partially sighted people7–10, which showed alignment with 
the conceptual representations of sighted human participants. By 
systematically examining conceptual representations across a spec-
trum from non-sensorimotor to sensorimotor domains and a wide 
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Fig. 5 | Visual domain analysis. a,b, Using the strength of visual correlation 
to predict the degree to which visual LLMs enhance alignment with human 
conceptual representations compared with their text-only counterparts. This 
comparison was made for ChatGPT models (GPT-4 versus GPT-3.5) (a) and 
Google LLMs (Gemini versus PaLM) (b). c, Visual association strength of each 
dimension: the absolute values of the Spearman correlation coefficients, based 
on human ratings1,2, reflect the association strength of each dimension with 

the visual dimension. A higher coefficient signifies a stronger link to visual 
processing, such as the imageability and haptic dimensions. The x axis across 
all three subplots displays the dimensions, sorted by their visual association 
strength (as shown in c). In a, the y axis shows the difference in model–human 
correlations between GPT-4 and GPT-3.5. In b, similarly, the y axis denotes the 
difference in model–human correlations between Gemini and PaLM. In c, the y 
axis indicates the visual association strength of each dimension.

http://www.nature.com/nathumbehav


Nature Human Behaviour

Article https://doi.org/10.1038/s41562-025-02203-8

range of concepts, we found a gradual decrease in similarity between 
LLM-derived and human-derived representations, with stronger dis-
parity in sensorimotor domains. These results offer insights into the 
extent to which language can shape complex concepts and underscore 
the importance of multimodal inputs for LLMs emulating human-level 
conceptual knowledge.

In light of the ongoing debate about the necessity of embodied 
grounding for achieving human-level conceptual representation26,32, 
The present study suggests that while some aspects of conceptual 

representations may be detached from sensorimotory experience, 
a considerable degree of sensorimotor input appears essential. Take  
the concept of ‘flower’, for instance. Language can capture certain 
conceptual connotations of ‘flower’ insofar as they emerge from distri-
butional relationships among words in context (for example, positive 
emotional valence may arise from ‘this flower smells joyous’). How-
ever, the sensorimotor experience of ‘flower’ may cut across linguistic 
contexts and may implicitly shape our conceptual knowledge, to form 
diverse relationships across objects and experiences in the world 
around us. From the intense aroma of a flower, the vivid silky touch 
when we caress petals, to the profound visual aesthetic sensation, 
human representation of ‘flower’ binds these diverse experiences and 
interactions into a coherent category. This type of associative percep-
tual learning, where a concept becomes a nexus of interconnected 
meanings and sensation strengths, may be difficult to achieve through 
language alone. Real-world interactions, similar to those in human 
experiences, are probably essential for comprehensive sensory per-
ception, physical action and perceptual representation of concepts54.

Intriguingly, we found greater discrepancies between human and 
LLM ratings for motor-related dimensions than for sensory dimen-
sions—an area underexplored in prior studies. Two explanations for this 
finding are: (1) motor aspects are less frequently described in language, 
making them harder for LLMs to learn from language, as noted by ref. 55,  
and (2) motor representations rely more on embodied experiences, 
unlike sensory concepts such as colour, which can be learned through 
language9. Motor cortex lesions also impair action-word processing, 
underscoring the need for embodiment56. This further highlights LLMs’ 
limitations in representing motor concepts owing to the lack of physical 
commonsense and action-related input.

The current study exemplifies the potential benefits of multimodal 
learning where ‘the whole is greater than the sum of its parts’, showing 
how the integration of multimodal inputs can potentially lead to a more 
human-like representation than what each modality could offer inde-
pendently. We found that LLMs incorporating visual inputs align better 
with human representations in visual as well as visual-related dimen-
sions, such as haptics and imageability. This repre sentational trans-
fer is well observed in humans57,58. For instance, humans can acquire 
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Fig. 6 | Concreteness analysis. a, The partial Spearman correlations between 
human and model ratings, controlling for word concreteness, are very similar 
(Rs = 0.93) to the original correlations. The dashed identity line indicates a perfect 
match, where the partial correlation value is exactly the same as the original 
correlation value. The error bars depict the 95% confidence intervals, estimated 
by bootstrap resampling 1,000 samples of ratings. The central value represents 
the estimated correlation coefficient between the lower and upper confidence 
bounds. b, A bin analysis of the correlations between human and model ratings 

across different levels of word concreteness for each model (GPT-3.5, GPT-4, 
PaLM and Gemini) and domain (non-sensorimotor, sensory and motor). The 
words were first sorted by concreteness values and then divided into bins of 100 
words each. The x axis shows the median concreteness value within each bin. The 
y axis denotes model–human Spearman correlations (Fisher Z-transformed) for 
words within the bin. The fit line for each panel represents the prediction from 
the regression model for each domain and each model.

Table 2 | Spearman correlations between LLM–human 
ratings for the original and validation norms, and between 
original–validation norms for LLM and human ratings

Model Dimension LLM–human Original–validation

Original Validation LLM Human

GPT-3.5

Valence 0.90 0.83 0.90 0.93

Dominance 0.62 0.66 0.82 0.69

Arousal 0.64 0.47 0.55 0.62

Concreteness 0.71 0.63 0.61 0.93

GPT-4

Valence 0.93 0.88 0.92 0.93

Dominance 0.63 0.67 0.86 0.69

Arousal 0.64 0.43 0.54 0.62

Concreteness 0.93 0.87 0.88 0.93

Imageability 0.91 0.77 0.83 0.89

Haptic 0.76 0.88 0.55 0.55

Hand/arm 0.66 0.88 0.68 0.55

PaLM valence 0.78 0.44 0.42 0.91

Gemini

Valence 0.87 0.83 0.82 0.91

Arousal 0.66 0.15 0.39 0.60

Concreteness 0.75 0.66 0.58 0.93

Original norms denote Glasgow or Lancaster. All correlations were significant (P < 0.001).
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object-shape knowledge through both visual and tactile experiences57, 
and brain activation in the lateral occipital complex was observed 
during both seeing and touching objects59. Akin to humans, given the 
architecture and learning mechanisms of visual LLMs, where repre-
sentations are encoded in a continuous, high-dimensional embedding 
space, inputs from multiple modalities may fuse or shift embeddings  
in this space. The smooth, continuous structure of this embedding 
space may underlie our observation that knowledge derived from one 
modality seems to spread across other related modalities60–62. Further 
along this vein, our study points to the possibility that models may 
be able to approximate human-like conceptual representations even 
without full sensorimotor experience; partial access could suffice to 
span much of human experience15. This insight may also shed light 
on why similar representations were observed between congenitally 
blind and partially sighted people and normally sighted people8–10. 
Future research should explore the extent of sensory access needed 
in multimodal models and the limits of knowledge transfer across 
different domains. The continued development of LLMs towards 
integrating additional modalities—as seen in multimodal speech and 
text processing in Whisper63 and embodied vision-language-action 
models such as RT-2 (ref. 64)—opens exciting prospects for further 
understanding and harnessing the potential of multimodal learning. 
We envision a future where LLMs are augmented with sensor data  
and robotics to actively make inferences about and act upon the  
physical world16,17. These advances may catalyse LLMs to truly embrace 
embodied artificial representation that mirrors the complexity and 
richness of human cognition17,29. Within this perspective, our findings 
may contribute to the trajectory of training data improvement and 
multimodal integration.

To what extent do LLMs inform us about human cognition?  
LLMs revive the old debate about whether and how distributional 
relationships in language-domain learning can scaffold a wide range 
of semantic processes, reflecting the richness of linguistic inputs in 
shaping human knowledge20,65,66. At the same time, their limitation 
in capturing human-like sensorimotor conceptual understanding 
via textual data and incomplete sensorimotor input also delineates 
the boundary of language-domain training and underscores the 
importance of grounding for human conceptual knowledge15. In this  
light, LLMs offer a valuable ‘how-possibly’ model of human cognition. 
Nonetheless, we acknowledge that most work on the parallels between 
LLMs and human language processing (for example, refs. 21,22), includ-
ing the current work, has been confined to the English language. This 
constitutes a limitation of our study, as language structure, embodi-
ment effects and neural processing could differ across languages. 
However, findings like those of ref. 67 suggest that motor verbs in 
French and German elicited similar motor-related brain activations 
compared with non-motor verbs, indicating that our English-based 
findings might generalize to other languages. Future studies should 
explore using diverse languages to validate and expand these insights 
(see Supplementary Information, section 7.4, for a further discussion 
on the cognitive plausibility of LLMs).

It is worth noting that LLMs involve diverse learning techniques, 
which adds complexity to their learning dynamics and makes it valuable 
to explore how each technique contributes to the final outcomes. For 
example, GPT-3.5 is pretrained using next-token prediction within text 
sequences and then further refined through two methods: supervised 
learning, where human-labelled data specifies the correct output, and 
reinforcement learning with human feedback (RLHF), which enables 
the model to improve by interacting with the external environment 
indirectly47. These two techniques could also bring in non-linguistic 
knowledge, as humans provide labels or feedback based on some 
non-linguistic resources. We believe these techniques do not alter our 
main findings, as RLHF is constrained by mechanisms such as Kullback–
Leibler (KL) divergence penalties68, which prevent the fine-tuned model 
from diverging substantially from the pretrained version. Although 

RLHF may indirectly introduce human preferences based on real-world 
non-linguistic experiences, the model’s learning remains primarily 
driven by linguistic input. However, a key limitation of our study is 
the proprietary nature of these large models, which makes it chal-
lenging to conduct open scientific research and fully understand the 
individual effects of each learning approach, including the specific 
impacts of RLHF. This opacity hinders our ability to dissect how dif-
ferent techniques influence the model’s behaviour. Therefore, our 
conclusions about how LLMs acquire and process language and embod-
ied experiences should be interpreted with these considerations in 
mind, underscoring the need for greater transparency in LLM research  
to enable more systematic investigations. Notably, DeepSeek-V3 
(ref. 69), a recent high-performance open-source model with various 
post-training optimization, shows performance comparable to GPT-4 
(Supplementary Fig. 5), further supporting our conclusion: LLMs cap-
ture non-sensorimotor semantics well but still struggle with nuanced 
sensory and motor features of words and concepts. Future research 
could focus on smaller, more accessible models to test and compare 
the roles of various learning techniques, such as prediction-based 
learning, supervised learning and interaction-based reinforcement 
learning (see ref. 54 for an example). This is especially important given 
that leveraging multiple knowledge resources and interacting with 
the environment have long been recognized as crucial and efficient 
mechanisms in human language and concept development16,17,70.

We note that, although LLMs can approximate certain aspects 
of conceptual representation, particularly in non-sensorimotor and 
occasionally bodily dimensions, they obtain this by consuming vast 
amounts of text—orders of magnitude larger than the volume of lan-
guage a human is exposed to in their entire lifetime—and operating with 
extremely high complexity driven by billions of parameter settings20. 
This suggests that, while in the limit multimodal knowledge can be 
synthesized from language alone, this kind of learning is inefficient. 
By contrast, human learning and knowledge representation are both 
inherently multimodal and embodied, and interactive from the outset15. 
After all, when thinking of flowers, what comes to your mind is not 
merely their names but the vivid symphony in which sight, touch, scent 
and all your past sensorimotor experiences intertwine with profound 
emotions evoked—an experience far richer than words alone can hold.

Methods
Inclusion and ethics
The study involves the collection of data from LLMs and the use of 
secondary human-participant data1,2. For the human-participant data, 
ref. 1 noted that the study followed the ethical guidelines and protocols 
established by the British Psychological Society. Ethical approval for 
the study reported in ref. 2 was granted by the Lancaster University 
Research Ethics Committee.

Psycholinguistic norms
We used the Glasgow Norms1 and the Lancaster Sensorimotor Norms 
(henceforth the Lancaster Norms2) as human psycholinguistic word 
rating norms (see Table 1 for their dimensions). Together, the two 
norms offer comprehensive coverage of the included dimensions, 
both of which cover a large number of words. The Glasgow Norms col-
lected data from 829 human participants, including 599 female and 
230 male participants in terms of gender. The original publication did 
not specify whether sex and/or gender was determined by self-report 
or assignment. Participants ranged in age from 16 to 73 years, with a 
mean of 21.7 years (standard deviation (s.d.) of 7.4). The average age 
was 21.5 years (s.d. of 7.6) for female participants and 22.3 years (s.d. 
of 6.9) for male participants. The Lancaster Norms collected data from 
3,500 human participants, including 1,644 female and 1,823 male par-
ticipants. A total of 12 participants chose not to disclose their gender, 
and the gender information was missing for 21 participants. The aver-
age age of all participants was 34.9 years (s.d. of 10.3).
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The Glasgow Norms consist of normative ratings for 5,553 English 
words across nine dimensions, collected from native English speakers 
within the University of Glasgow community, UK1. We selected the 
Glasgow Norms owing to its large-scale data and highly standardized 
data collection process: the same participants rated all dimensions for 
any given subset of words, with an average of 33 participants per word. 
The nine dimensions include emotional arousal, valence, dominance, 
concreteness, imageability, size, gender association, familiarity and 
age of acquisition. In our study, we excluded familiarity and age of 
acquisition, as familiarity is less dependent on semantic and con-
ceptual representation71 and, therefore, less relevant to our research 
focus, while age of acquisition is neither central to our focus and nor a 
valid question for LLMs to answer. The validity of the Glasgow Norms 
has been demonstrated through strong correlations with 18 different 
sets of other psycholinguistic norms. Scott et al.1 conducted principal 
component analyses and identified three main categories underly-
ing these dimensions: emotion (valence and dominance), salience 
(arousal, size and gender) and mental visualization (concreteness 
and imageability). We adopt their validated structure for categorizing 
those dimensions.

The Lancaster Norms present multidimensional measures encom-
passing sensory and motor strengths for approximately 40,000 English 
words, collected from experienced users on Amazon’s Mechanical 
Turk platform2. These norms include six sensory dimensions (haptic,  
auditory, olfactory, interoceptive, visual and gustatory) and five motor 
dimensions (foot/leg, hand/arm, mouth/throat, torso and head exclud-
ing mouth). The sensorimotor properties of words are considered 
highly embodied, as they require human raters to utilize their everyday 
perceptual senses and bodily experiences to gauge each word. The data 
were collected from 3,500 unique participants, with each participant 
rating on average 7.12 lists for either the sensory or motor dimensions. 
Each list comprised 58 words, including 48 target words, 5 control 
words and 5 calibration words. The fixed sets of five control words 
were randomly interspersed to each item list to ensure the quality of 
participants’ ratings, and the five calibration words were presented at 
the beginning of each item list to introduce participants to unambigu-
ous examples for rating. The Lancaster Norms were chosen primarily 
because they provide a detailed and comprehensive representation 
of a word’s perceived sensorimotor strengths across 11 dimensions, 
covering all senses and the five most common action effectors. The 
norms exhibit high reliability, displaying substantial consistency 
across all dimensions, and their validity is demonstrated by their ability  
to accurately represent lexical decision-making behaviour from two 
distinct databases2.

There are differences between the Glasgow and Lancaster Norms in 
rater demographics. To ensure that any observed differences between 
the sensorimotor and non-sensorimotor dimensions are attributable to 
the intended dimensions rather than these demographic differences, 
it is essential to confirm the validity of both the norms and our model’s 
responses to them. The validity of the Glasgow and Lancaster Norms  
has been well established1,2, and the validity of model responses to  
them is reported in the ‘Validation of results’ section in Results.

We adhered to the design of the human-participant data col-
lection (Fig. 1b)1,2. For the Glasgow measures, the 5,553 words were 
divided into 40 lists, with 8 lists containing 101 words per list and 32 lists  
containing 150 words per list. The models rated all words in a list for 
one dimension before moving on to the next dimension and so forth. 
The order of words within each dimension and the order of dimensions 
within each testing round was randomized. For the Lancaster measures, 
there are in total 39,707 available words with cleaned and validated 
sensorimotor ratings. We first extracted 4,442 words overlapping 
with the 5,553 words in the Glasgow measures. Following the practice 
in the Lancaster Norms, we obtained the frequency and concreteness 
measures14 of these 4,442 words and attempted to perform quantile 
splits over them to generate item lists that maximally resemble those in 

the Lancaster Norms. However, since more than 95% of the 4,442 words 
have a ‘percentage of being known’ greater than 95%, we considered the 
majority of these words to be recognizable by human raters. Thus, we 
did not perform a quantile split of these words over word frequency. 
We instead implemented a quantile split based on their concreteness 
ratings with four quantile bins in the intervals 1.19–2.46, 2.46–3.61, 
3.61–4.57 and 4.57–5.00.

Next, we generated four sublists based on the concreteness rating 
quantile split and randomly selected 12 words from each sublist without 
replacement to create 48 words for each item list. We further appended 
the five calibration words (sensory dimensions: account, breath, echo, 
hungry and liquid; motor dimensions: shell, tourism, driving, breathe 
and listen) to the beginning of each list. Finally, we randomly inserted 
five control words (sensory dimensions: grass, honey, laughing, noisy 
and republic; motor dimensions: bite, enduring, moving, stare and  
vintage) into these lists to form 93 complete item lists, each containing 
58 words ready to be rated separately for sensory and motor dimen-
sions. The order of words within each item list and the order of dimen-
sions to rate for each round were randomized.

Models
We employed the gpt-3.5-turbo-0301 and gpt-4 (collected between 28 
May and 11 June 2023) from the OpenAI API for GPT-3.5 and GPT-4 and 
the PaLM2 (PaLM2 ratings of 2,474 words for the sensory dimensions 
were collected and PaLM2 ratings of 4,095 words for motor dimensions 
were collected since PaLM2 failed at returning ratings for several lists of 
words in each model run) and gemini-1.0-pro from the Google API for 
PaLM and Gemini. The selection of parameters in our study was based 
on methodological considerations aimed at optimizing the accuracy 
and consistency of the model outputs. The temperature parameter 
was set to 0, following recommendations described previously21,22) 
to ensure deterministic, consistent responses without random varia-
tions. The maximum token length was set to the upper limits permit-
ted—2,048 tokens for GPT-3.5, GPT-4 and Gemini and 1,024 tokens  
for PaLM—to avoid truncating responses. To enhance the reliability of 
our results, we implemented four rounds of testing for each model. 
This approach allowed us to cross-verify the consistency of the outputs 
across multiple iterations (see Supplementary Information, section 1, 
for the agreement between these rounds).

Testing procedure
The model prompt to ChatGPT was kept identical to the instruc-
tions that human participants received. However, we made minor 
adjustments to the prompt to ensure that the responses followed the 
expected format (for example, word – rating). When given testing items 
from the Lancaster Norms, the model consistently responded that it 
does not possess a biological body and, therefore, cannot experience 
the word through sensing or moving. To address this, we modified 
the instruction from ‘to what extent do you experience’ to ‘to what 
extent do human beings experience’, and we applied the same changes 
to the Glasgow Norms for consistency. Although the LLM is asked 
to respond on the basis of human experience, it is still utilizing its 
internal representations to provide answers. These representations 
are derived from extensive training on human-generated text, which 
makes the responses valid as a reflection of the collective conceptual 
representation of humans.

The images or tables used in human-participants tasks were  
converted to text format. Moreover, the online rating portal of the 
Lancaster Norms used a graphic demonstration of the five body parts 
for the action-executing effector ratings. Because GPT-3.5 and PaLM do 
not support such visual inputs in the prompts, we decided instead to 
describe these five body parts with words in the prompts for all of the 
models (see Supplementary Information, section 2, for a comparison 
between the instructions given to human participants and the adapted 
version provided to the models).
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Words analysed
For more uniform comparisons across various dimensions, we 
restricted our analysis of sensory and motor domains to words com-
mon to both the Glasgow and Lancaster Norms (4,442 words). Still, we 
retained the full Glasgow Norms (5,553 words) for the non-sensorimotor 
domain. Each of the overlapped 4,442 words has corresponding ratings 
across all evaluated dimensions. In occasional instances, models clas-
sified certain words as ‘unknown’ or unable to gauge (PaLM failed at 
generating all 4,442 words as detailed above). These words are typi-
cally those that may contravene content policies or that models such 
as PaLM struggle to interpret. In line with the practices described in 
refs. 1,2, such data points (that is, scores from individual runs) were 
excluded from the data analyses. To ensure that our results were not 
biased by words present in the Glasgow Norms but are not included  
in the Lancaster Norms, we conducted separate tests using only  
the fully overlapping concepts (4/5 of the Glasgow Norms) and found 
highly consistent results (Supplementary Information, section 6).

Individual-level pairwise correlations
For individual-level analysis, we computed pairwise Spearman  
correlations for each pair of individual human participants and 
between each human and individual runs of GPT-3.5, GPT-4, Gemini 
and PaLM. In the human–human correlations, each participant evalu-
ated only a subset of words. In the Glasgow Norms, participants rated 
one of either 8 lists (comprising 808 words in total, with 101 words per 
list) or 32 lists (from a pool of 4,800 words, with 150 words per list). 
Each list received ratings from 32–36 participants, and there was no 
overlap in words across different lists. The pairwise correlations were 
calculated within each list, and these were aggregated, resulting in a 
total of 22,730 pairs for constructing the overall distribution for each 
dimension in the Glasgow Norms.

In the Lancaster Norms, the sensory component involved 2,625 
participants (averaging 5.99 lists each) and the motor component 
had 1,933 participants (averaging 8.67 lists each). Each list included 
48 test items, along with a constant set of five calibration and five con-
trol words, totalling 58 items per list. Given the larger pool of 40,000 
words in the Lancaster Norms, the subset of 4,442 words resulted in 
some participants rating few items. To maintain a sufficient sample 
size for correlation calculations, we iterated through pairs of partici-
pants and included those with ratings for over 50 common words. This 
approach yielded 105 pairs for every sensory dimension and 196 pairs 
for every motor dimension, from which we constructed the correla-
tion distributions.

In the human model correlations, we generated pairs by match-
ing each model run (out of four total runs) with individual human 
participants across different lists. This approach yielded 5,476 pairs 
for the Glasgow Norms. For the Lancaster Norms, we paired humans 
and models based on having ratings for over 50 common words,  
mirroring the approach used in constructing human–human pairs. 
This process resulted in a total of 224 pairs for each sensory dimen-
sion and 440 pairs for each motor dimension, forming the basis  
for the correlation distributions.

RSA
For the RSA analysis, we first iterated through human rating data 
from the Glasgow and Lancaster Norms, extracting ratings across  
the non-sensorimotor, sensory and motor domains for lists of words 
rated by individual human participants. Each word was represented 
by a vector containing human ratings for each domain (for exam-
ple, a vector for the sensory domain included ratings from six typical 
senses). Next, with these vectors, we built RDMs by calculating pairwise 
Euclidean distances between words for each list rated by individual 
human participants. This process was repeated for all three domains. 
Finally, we compared the RDMs derived from individual human  
ratings with model RDMs. The model RDMs were constructed using 

averaged ratings across four runs generated by the GPT models and 
Google models for the same words in each human word list. The  
comparison between human and model RDMs was conducted using 
Spearman correlation.

To ensure consistency and maintain a sufficient sample size for  
the RSA analysis, we only paired human and model data that had at  
least 50 shared words in each of the non-sensorimotor, sensory and 
motor domains for each model. As a result, we retained 829 pairs of 
RDMs from the Glasgow Norms for the non-sensorimotor domain RSA, 
applicable to both GPT and Google models. For the Lancaster Norms, 
we retained 435 pairs of RDMs for the sensory domain RSA and 443 
pairs for the motor domain RSA with the GPT models. For the Google 
models, we retained 272 pairs of RDMs for the sensory domain RSA  
and 323 pairs for the motor domain RSA.

Measuring similarities
Spearman correlations were used for most similarity measurements, a 
common practice in many previous studies44,72, as they are known to be 
robust with respect to outliers. For better presentation of correlations, 
we follow standard benchmarks: values under 0.10 are negligible, 0.10 
is small, 0.30 medium and 0.50 or higher large73. We used Euclidean 
distance instead of Spearman correlations in only one case: when 
constructing RDMs for each word pair separately for humans and 
models. This decision was due to the small dimensionality of word rat-
ing vectors in each domain—N = 7 for the non-sensorimotor domain, 
N = 6 for the sensory domain and N = 5 for the motor domain. In such 
small dimensions, the ranking process used in Spearman correlations 
becomes less reliable and more sensitive to small variations in data74, 
diminishing the ability to distinguish between different levels of simi-
larity as the number of elements (that is, ranks) decreases. Conversely, 
Euclidean distance measures the ‘straight line’ distance between points 
in multidimensional space and is based on actual values rather than 
rankings. This measure tends to be more stable in cases of small dimen-
sionality because it does not rely on rank-order relationships but on the  
actual differences in values across dimensions. However, because 
Euclidean distance is sensitive to the scale of the data, we normalized 
the rating values of each dimension using a z-score before obtaining 
vectors for each word in each domain.

Significance testing
All reported statistics are based on two-sided tests. The P values 
reported in each section were corrected for multiple comparisons using 
the FDR method43. In the Results section, the correction accounted for 
157 tests, encompassing 72 aggregated-level dimension-wise correla-
tions, 72 individual-level t-test comparisons between human–human 
distributions and model–human distributions, 4 Mann–Whitney  
U tests, 1 χ2 test and 8 comparisons for RSA analyses. For the ‘Linking  
additional visual training to model–human alignment’ section in 
Results, the correction covered 20 tests, including 18 correlations 
between each dimension and the visual dimension and 2 t-tests assess-
ing the predictive effect of visual correlation strength. In the ‘Validation 
of results’ section in Results, the correction was applied over 79 tests, 
which include 1 test for the comparison between the partial and the 
original correlation values, 47 tests for the bin analysis and 30 tests for 
using validation norms to validate model responses.

For the dimension-wise correlation analyses in the Results 
section on aggregated model and human ratings, we utilized the 
Mann–Whitney U test for independent-sample non-parametric com-
parisons of model–human similarities between sensorimotor and 
non-sensorimotor domains. This approach was selected owing to the 
small sample size (in this context, the number of dimensions within 
each domain) and the violation of normal distribution assumptions by 
the data. Non-parametric tests, although generally less powerful than 
parametric tests, are robust to outliers in such scenarios. Moreover, 
we reported the effect size using the rank-biserial correlation (rrb),  
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a common measure for non-parametric tests. For the dimension-wise 
correlation analyses in the individual-level analysis, we utilized 
independent-sample t-tests to determine whether the distributions of 
model–human similarities differed significantly from human–human 
similarities. This approach was based on the assumption of normality 
and the presence of a large sample size. We conducted a separate t-test 
for each dimension. To organize the results of multiple t-tests effec-
tively, we counted, within each domain, the number of instances where 
the distributions of model–human similarities were not significantly 
lower than those of human–human similarities, as indicated by the 
t-tests. A χ2 test of independence was then performed to assess whether 
the counts varied significantly across the domains (non-sensorimotor, 
sensory or motor).

For the RSA analysis (‘RSA’ section in Results), after obtaining dis-
tributions of similarities between all human subjects and each model 
separately for each domain, we conducted a 3 × 2 (domain levels by mod-
els, respectively) two-way ANOVA for each set of models—ChatGPTs  
and Google LLMs—separately. This separation was to assess the  
consistency of main effects of domain across the two LLM families. 
Owing to violations of the equal variances assumption, we used the 
Satterthwaite’s method for the ANOVA tests and applied Welch’s cor-
rections for post hoc pairwise comparisons. In the linear regression  
analyses (‘Linking additional visual training to model–human align-
ment’ section and ‘Validation of results’ section in Results), we 
conducted analyses after checking the assumptions of linearity, inde-
pendence of residuals and normality. While the regression models in 
the ‘Linking additional visual training to model–human alignment’ 
section in Results meet all assumptions, the model in the ‘Validation 
of results’ section in Results shows a slight violation of the normal-
ity of residuals assumption, as indicated by the Normal Q–Q plot. To 
ensure the reliability of the results in the ‘Validation of results’ section 
in Results, we conducted an additional Bayesian linear regression analy-
sis for cross-validation (Supplementary Information, section 5.4). In  
the ‘Linking additional visual training to model–human alignment’ 
section in Results, the Fisher Z-transformation was applied to the 
Spearman R values to measure the difference between two correlation 
coefficients, a practice that is justified by ref. 75.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
Data obtained from ChatGPTs and Google LLMs are publicly avail-
able at https://osf.io/kguwd/. The human dataset of the Glasgow 
Norms is from ref. 1, with word-level data accessible at https://doi.org/ 
10.3758/s13428-018-1099-3 (ref. 1). The corresponding trial-level data  
was kindly provided by Sara Sereno and Jack Taylor. The Lancaster 
Norms is from ref. 2, and the data including both word-level and 
trial-level can be found at https://embodiedcognitionlab.shinyapps.io/ 
sensorimotor_norms/ (ref. 76). The validation norms datasets are 
openly available via the following links: the datasets of valence, arousal 
and dominance at https://link.springer.com/article/10.3758/s13428-
012-0314-x#SecESM1 (ref. 34), the imageability norms at https://link.
springer.com/article/10.3758/BF03195585#SecESM1 (ref. 52), the con-
creteness norms at https://link.springer.com/article/10.3758/s13428-
013-0403-5#MOESM1 (ref. 4) and the perceptual strength norms at 
https://link.springer.com/article/10.3758/s13428-012-0215-z#SecESM1 
(ref. 3). Source data are provided with this paper.

Code availability
The data collection and analyses were conducted using Python and R. 
All code is publicly available at https://osf.io/kguwd/. In addition, we 
developed an analysis pipeline that enables researchers to examine 
their models of interest. As new models continue to emerge, we will 

regularly update the repository to ensure its ongoing relevance for the 
research community. The pipeline and associated resources are also 
accessible via GitHub at https://github.com/qxu1994/LLM_grounding.
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