Lab Intro

• Often these terms are used interchangeably, but best not to

Model vs. Theory

- Often these terms are used interchangeably, but best not to
- Theories are *general*
 - they describe general principles that apply to all cases within their scope

Model vs. Theory

• Often these terms are used interchangeably, but best not to

• Theories are general

 they describe general principles that apply to all cases within their scope

• Models are *specific*

 they implement a theory, to precisely test its applicability to a particular set of conditions

Model vs. Theory

• Often these terms are used interchangeably, but best not to

• Theories are general

 they describe general principles that apply to all cases within their scope

• Models are *specific*

 they implement a theory, to precisely test its applicability to a particular set of conditions

• Example of a model...

• "Be as fast but as accurate as you can"

• "Be as fast but as accurate as you can"

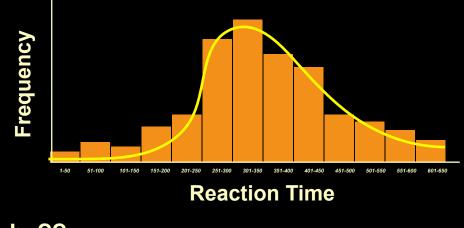

- what does that mean??

• "Be as fast but as accurate as you can"

- what does that mean??
 - how fast?
 - how accurate??

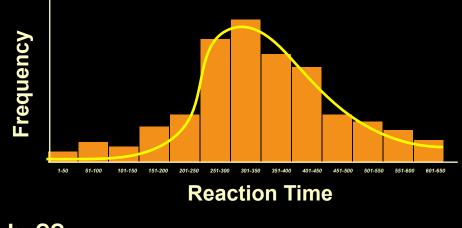
- "Be as fast but as accurate as you can"
 - what does that mean??
 - how fast?
 - how accurate??

• Reaction time distribution:


- "Be as fast but as accurate as you can"
 - what does that mean??
 - how fast?
 - how accurate??

• Reaction time distribution:

- "Be as fast but as accurate as you can"
 - what does that mean??
 - how fast?
 - how accurate??


• Reaction time distribution:

why??

- "Be as fast but as accurate as you can"
 - what does that mean??
 - how fast?
 - how accurate??

• Reaction time distribution:

why??

Phenonema in search of a theory / model

• Implement model as a (mathematical equation or) computer program:

- input: a representation of the stimulus presented to an agent (person or bot)

• Implement model as a (mathematical equation or) computer program:

- input: a representation of the stimulus presented to an agent (person or bot)
- simulate: (calculate the equation or) run the program

• Implement model as a (mathematical equation or) computer program:

- input: a representation of the stimulus presented to an agent (person or bot)
- simulate: (calculate the equation or) run the program
- output: prediction about what the agent did

• Implement model as a (mathematical equation or) computer program:

- input: a representation of the stimulus presented to an agent (person or bot)
- simulate: (calculate the equation or) run the program
- output: prediction about what the agent did

• Our program will:

- take an input and assign that (represent it) as the activity of a perceptual unit

• Implement model as a (mathematical equation or) computer program:

- input: a representation of the stimulus presented to an agent (person or bot)
- simulate: (calculate the equation or) run the program
- output: prediction about what the agent did

• Our program will:

- take an input and assign that (represent it) as the activity of a perceptual unit
- simulate the moment-by-moment *flow of activity* from the perceptual unit to some response units
 - allow just a little bit of activity to "flow" in each simulated time step ("cycle")

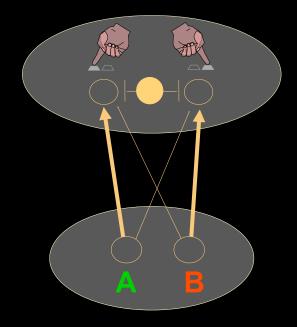
• Implement model as a (mathematical equation or) computer program:

- input: a representation of the stimulus presented to an agent (person or bot)
- simulate: (calculate the equation or) run the program
- output: prediction about what the agent did

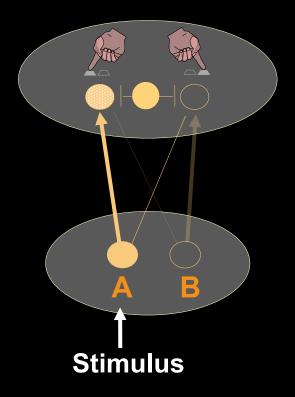
• Our program will:

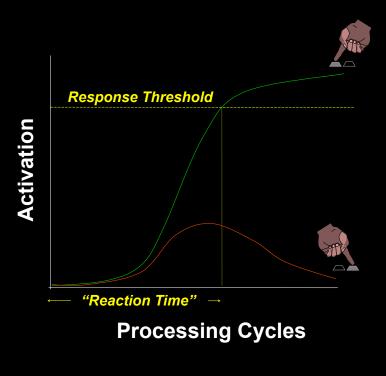
- take an input and assign that (represent it) as the activity of a perceptual unit
- simulate the moment-by-moment *flow of activity* from the perceptual unit to some response units
 - allow just a little bit of activity to "flow" in each simulated time step ("cycle")

- stop when activity of a response unit exceeds a threshold value

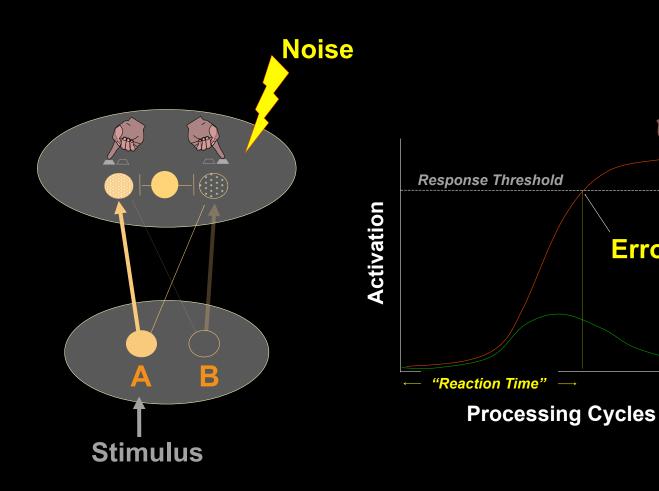

• Implement model as a (mathematical equation or) computer program:

- input: a representation of the stimulus presented to an agent (person or bot)
- simulate: (calculate the equation or) run the program
- output: prediction about what the agent did

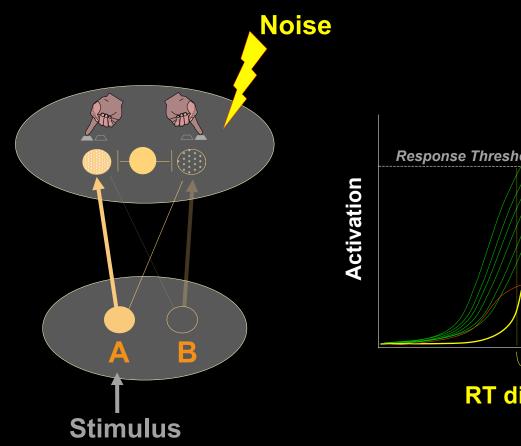

• Our program will:

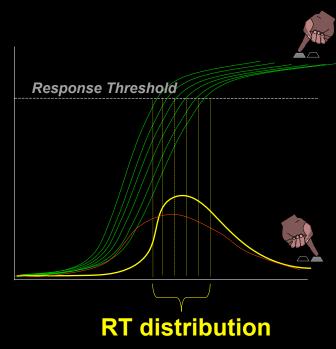

- take an input and assign that (represent it) as the activity of a perceptual unit
- simulate the moment-by-moment *flow of activity* from the perceptual unit to some response units
 - allow just a little bit of activity to "flow" in each simulated time step ("cycle")
- stop when activity of a response unit exceeds a threshold value
- record:
 - # of time-steps that occurred = reaction time
 - which response unit crossed the threshold = accuracy

Simulation of a Simple Task



Simulation of a Simple Task




Variability of Performance

Error

Variability of Performance

What's the theory here?

What's the theory here?

• Accumulation to bound / integration theory of decision making We'll come to this later in the course

- Exploration:
 - provide complete *control* of system \rightarrow training, "surgery," redesign

• Exploration:

- provide complete *control* of system \rightarrow training, "surgery," redesign
- develop *intuitions* about behavior of complex (e.g., nonlinear) systems

• Exploration:

- provide complete *control* of system \rightarrow training, "surgery," redesign
- develop intuitions about behavior of complex (e.g., nonlinear) systems
- Identify new behaviors \rightarrow *predictions* that can be tested in experiments

• Exploration:

- provide complete control of system \rightarrow training, "surgery," redesign
- develop *intuitions* about behavior of complex (e.g., nonlinear) systems
- Identify new behaviors \rightarrow *predictions* that can be tested in experiments

Integration:

- emergent properties and complex interactions
 - "de-reify" psychological constructs (e.g., homunculus & executive control)

• Exploration:

- provide complete *control* of system \rightarrow training, "surgery," redesign
- develop *intuitions* about behavior of complex (e.g., nonlinear) systems
- Identify new behaviors \rightarrow *predictions* that can be tested in experiments

Integration:

emergent properties and complex interactions
 "de-reify" psychological constructs (e.g., homunculus & executive control)

unify seemingly disparate phenomena and/or concepts

(attention vs. working memory)

• Exploration:

- provide complete *control* of system \rightarrow training, "surgery," redesign
- develop *intuitions* about behavior of complex (e.g., nonlinear) systems
- Identify new behaviors \rightarrow *predictions* that can be tested in experiments

Integration:

- emergent properties and complex interactions
 "de-reify" psychological constructs (e.g., homunculus & executive control)
- unify seemingly disparate phenomena and/or concepts (attention vs. working memory)

• Realization: "Therapy on theory"

– formal rigor is a antidote to self-deception (mental "muddles")

• Exploration:

- provide complete *control* of system \rightarrow training, "surgery," redesign
- develop *intuitions* about behavior of complex (e.g., nonlinear) systems
- Identify new behaviors \rightarrow *predictions* that can be tested in experiments

Integration:

- emergent properties and complex interactions
 "de-reify" psychological constructs (e.g., homunculus & executive control)
- unify seemingly disparate phenomena and/or concepts (attention vs. working memory)

• Realization: "Therapy on theory"

- formal rigor is a antidote to self-deception (mental "muddles")
- flush out hidden assumptions and inconsistencies in verbal theories:
 - identify need for new data

Value of Models

• Exploration:

- provide complete *control* of system \rightarrow training, "surgery," redesign
- develop *intuitions* about behavior of complex (e.g., nonlinear) systems
- Identify new behaviors \rightarrow *predictions* that can be tested in experiments

Integration:

- emergent properties and complex interactions
 "de-reify" psychological constructs (e.g., homunculus & executive control)
- unify seemingly disparate phenomena and/or concepts (attention vs. working memory)

• Realization: "Therapy on theory"

- formal rigor is a antidote to self-deception (mental "muddles")
- flush out hidden assumptions and inconsistencies in verbal theories:
 - identify need for new data
- provide a language for clear and precise communication

Danger of Models

- Models are too simple:
 - "toy models:"
 - biologically implausible
 - psychologically implausible

Danger of Models

- Models are too simple:
 - "toy models:"
 - biologically implausible
 - psychologically implausible

- Models are too complex:
 - too many degrees of freedom (can explain anything)
 - different model of each different phenomenon

• Pick interesting questions

• Pick interesting questions

• Pick the right level of analysis

- Pick interesting questions
- Pick the right level of analysis

- Make contact with existing theory
 - don't "reinvent the wheel"

- Pick interesting questions
- Pick the right level of analysis

- Make contact with existing theory
 - don't "reinvent the wheel"
- "Coin of the realm:"
 - "postdict" / predict empirical data

- Pick interesting questions
- Pick the right level of analysis

- Make contact with existing theory
 - don't "reinvent the wheel"
- "Coin of the realm:"
 - "postdict" / predict empirical data
- Satisfy your curiosity...

- Pick interesting questions
- Pick the right level of analysis

- Make contact with existing theory
 - don't "reinvent the wheel"
- "Coin of the realm:"
 - "postdict" / predict empirical data
- Satisfy your curiosity... but be ready for surprise!

A Block Modeling System for Cognitive Neuroscience

• Provide a language for implementing models of mind/brain function that is accessible to cognitive, brain, and computer scientists

• Smallest number of "commitments," that reflect fundamental principles of how the mind/brain is organized and functions without committing to any *particular* model or theory

• Allow models/theories to be expressed in as flexible a way as possible

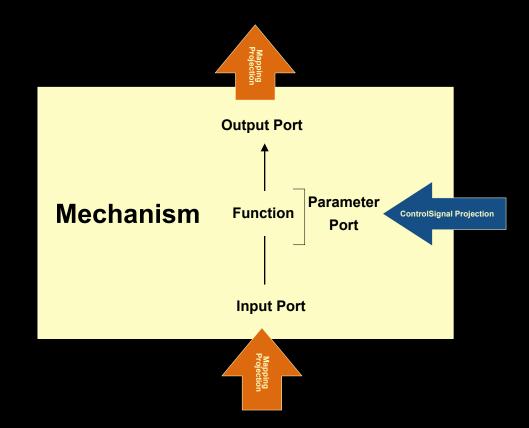
• Provide a common framework for model sharing, integration and documentation

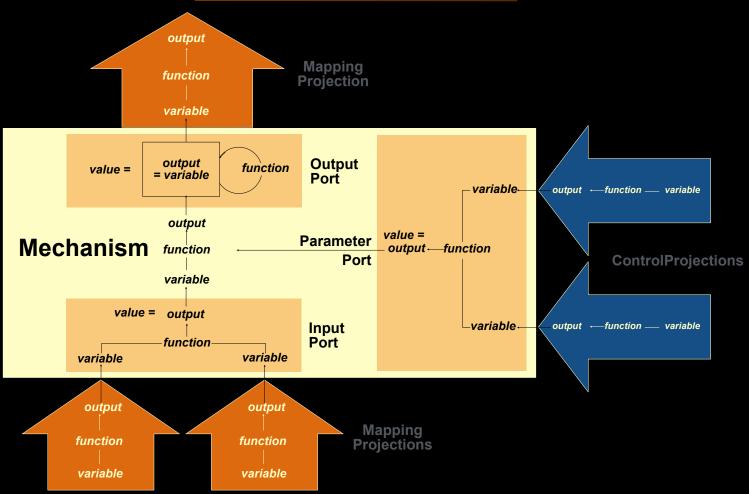
- Python-based

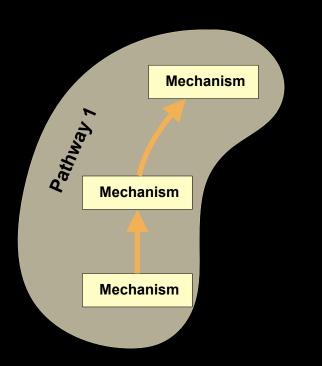
• Tutorial and documentation

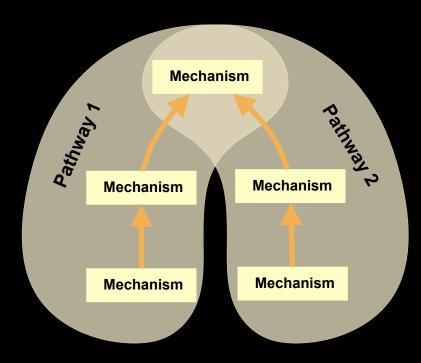
 Object-oriented, "declarative" (vs. functional, "procedural") programming language:

Think as much about *what* as *how*

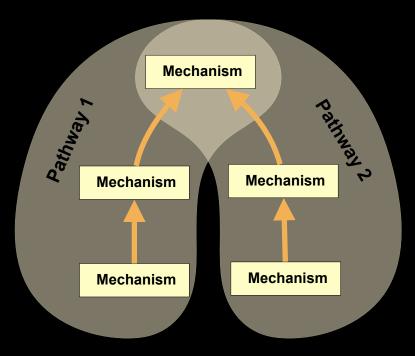

- Multiple levels of analysis:
 - function
 - mechanism
 - process
 - system

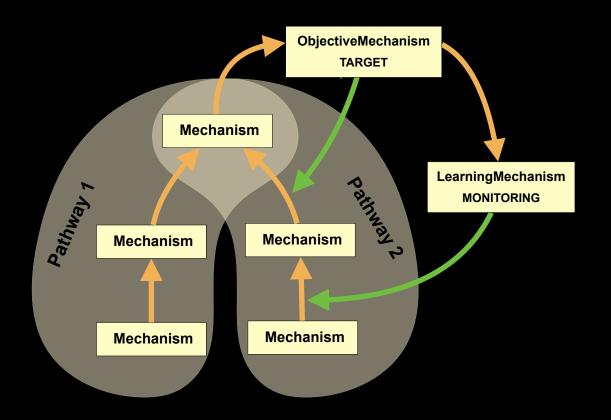

- Multiple levels of analysis:
 - function
 - mechanism
 - process
 - system
- Multiple time scales:
 - ballistic (analytic solution)
 - continuous (stepwise integration, "cascaded")
 - discrete ("stages," trials...)

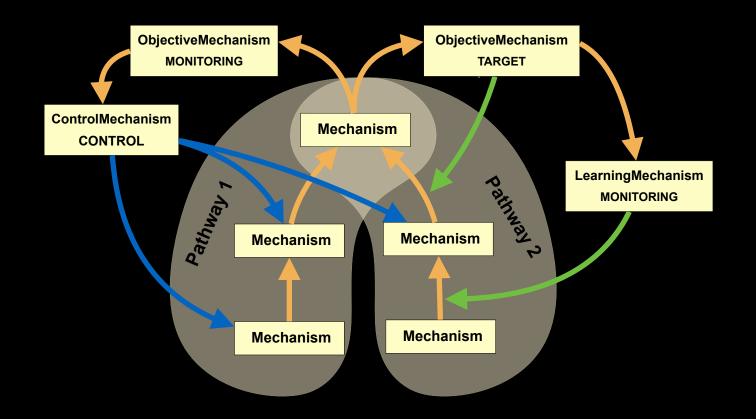

- Multiple levels of analysis:
 - function
 - mechanism
 - process
 - system
- Multiple time scales:
 - ballistic (analytic solution)
 - continuous (stepwise integration, "cascaded")
 - discrete ("stages," trials...)

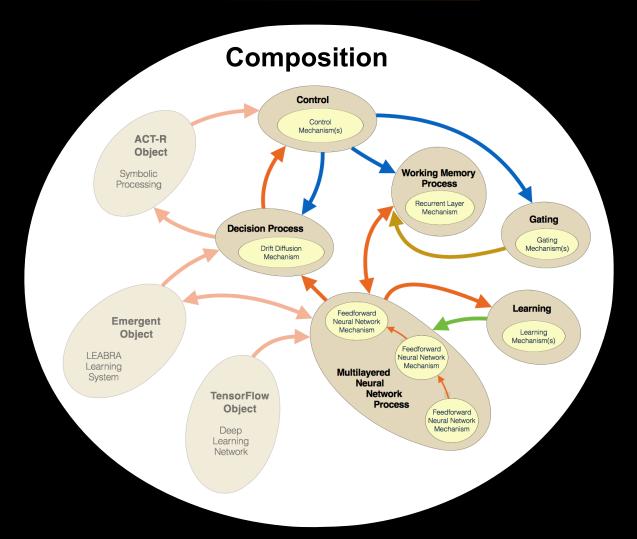

• Multiple styles/granularities of representation and computation:

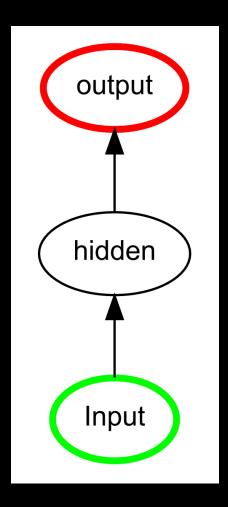
- biophysical vs. connectionist (PDP) vs. symbolic
- mathematical vs. numerical

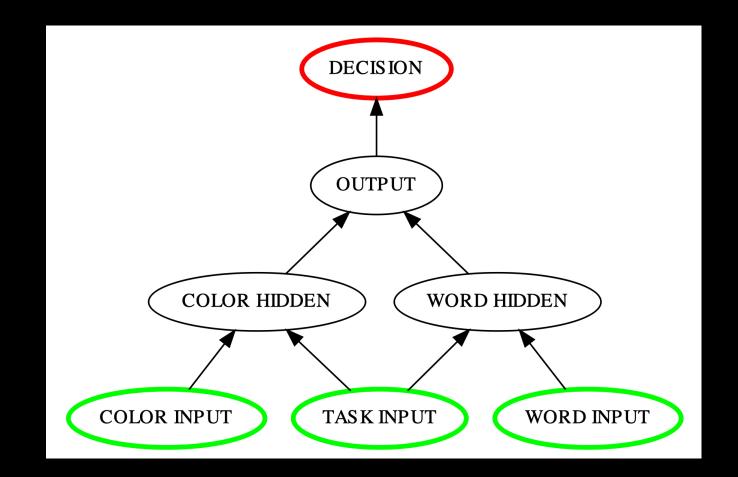


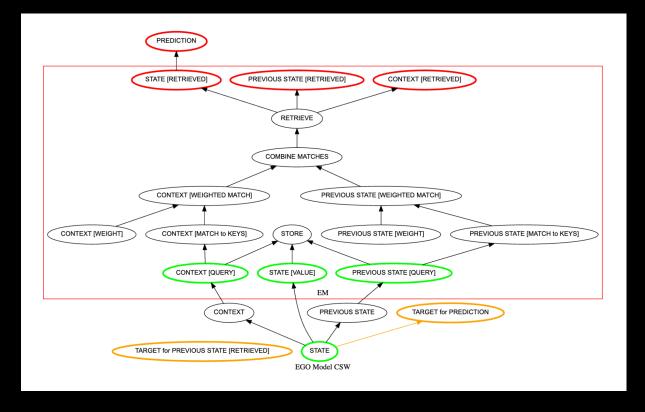



Composition




Composition




Composition

