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Abstract 

Naturalistic electrocorticography (ECoG) data are a rare but essential resource for 
studying the brain’s linguistic capabilities. ECoG offers a high temporal resolution 
suitable for investigating processes at multiple temporal timescales and frequency 
bands. It also provides broad spatial coverage, often along critical language areas. 
Here, we share a dataset of nine ECoG participants with 1,330 electrodes listening to a 
30-minute audio podcast. The richness of this naturalistic stimulus can be used for 
various research endeavors, from auditory perception to semantic integration. In 
addition to the neural data, we extract linguistic features of the stimulus ranging from 
phonetic information to large language model word embeddings. We use these 
linguistic features in encoding models that relate stimulus properties to neural activity. 
Finally, we provide detailed tutorials for preprocessing raw data, extracting stimulus 
features, and running encoding analyses that can serve as a pedagogical resource or a 
springboard for new research.  
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Background & Summary 

We introduce the “Podcast” electrocorticography (ECoG) dataset for modeling neural 
activity supporting natural narrative comprehension. This dataset combines the 
exceptional spatiotemporal resolution of human intracranial electrophysiology with a 
naturalistic experimental paradigm for language comprehension. In addition to the raw 
data, we provide a minimally preprocessed version in the high-gamma spectral band to 
showcase a simple pipeline and to make it easier to use. Furthermore, we include the 
auditory stimuli, an aligned word-level transcript, and linguistic features ranging from 
low-level acoustic properties to large language model (LLM) embeddings. We also 
include tutorials replicating previous findings and serve as a pedagogical resource and 
a springboard for new research. The dataset comprises 9 participants with 1,330 
electrodes, including grid, depth, and strip electrodes. The participants listened to a 
30-minute story with over 5,000 words. By using a natural story with high-fidelity, 
invasive neural recordings, this dataset offers a unique opportunity to investigate 
language comprehension. 

Language has a rich history of study in many scientific fields. Historically, research on 
the neural basis of language used highly controlled experimental stimuli to target 
particular linguistic phenomena, e.g., isolated words and sentences varying along a 
specific linguistic feature (Friederici, 2011; Price, 2012). The past decade has seen a 
push for a more ecological, holistic account of the neural basis of language processing 
(Hamilton & Huth, 2020; Hasson & Honey, 2012; Nastase et al., 2020). Yet naturalistic 
neural data is more challenging to model and understand than, for example, 
contrast-based experimental paradigms. Researchers have used data-driven methods 
like intersubject correlation (ISC) to isolate stimulus-driven processing in naturalistic 
contexts, sometimes under different conditions (Hasson et al., 2004; Nastase et al., 
2019). However, data-driven methods like ISC do not allow us to test various models for 
the neural computations driving language processing (Goldstein et al., 2022; Yarkoni & 
Westfall, 2017; Zada et al., 2024). 

Linear regression encoding models serve as a model-based analysis framework that 
maps linguistic and stimulus features to neural data (Holdgraf et al., 2017; Naselaris et 
al., 2011). These models learn a direct mapping from stimuli properties (e.g., word 
embeddings) to neural activity. With hundreds of regressors, regularization is often 
employed through PCA or a ridge penalty (Nunez-Elizalde et al., 2019). To evaluate their 
performance, encoding models are trained on a subset of data, then correlate 
model-based predictions with actual neural data for a held-out test set of data. If the 
prediction accuracy of the held-out test is high, we conclude that the neural activity 
encodes stimulus features represented by the model features. The encoding framework 
allows us to compare different stimulus properties, where different stimulus features act 
as hypotheses about the neural activity's underlying function or representation. 
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With the current dataset, we offer five distinct models for processing the podcast data 
to evaluate on the ECoG dataset: 1) Low-level sensory features expressed as 80 
mel-spectral power bins derived from the raw audio waveform. 2) Phoneme-level 
speech units are defined by decomposing each word into its constituent phonemes and 
represented using a 44-dimensional binary vector indicating the presence of a 
phoneme. In addition, we group consonants into the manner of articulation (e.g., nasal, 
plosive) and place of articulation (e.g., dental, palatal), based on de Heer et al., (2017). 
3) Syntactic properties constituting 50 part-of-speech tags (e.g., nouns, verbs, 
adjectives, etc.), and 45 syntactic dependencies based on sentence parse trees 
codified as binary vectors. 4) Non-contextual word embeddings from pre-trained 
language models (e.g., GloVe (Pennington et al., 2014)), representing each word as a 
300-dimensional vector representation learned from large corpora of natural text. 
Notably, each word is assigned the same vector regardless of its context. 5) Contextual 
word embeddings from a large language model (LLM) where each word vector is 
influenced by all preceding words within its contextual window. For example, we used 
GPT-2 XL (Radford et al., 2019), where word embeddings are 1,600-dimensional 
vectors. This tutorial demonstrates how to use these five models within an encoding 
comparison framework to predict neural activity, testing the effectiveness of competing 
models in capturing neural processes during natural language processing across 
different electrodes and brain areas. 

The encoding-based model comparison showed that contextual word embeddings 
extracted from GPT-2 XL accounted for most of the variance across nearly all the 
electrodes tested in this dataset. These findings are aligned with recent work from our 
lab and others that find alignment between the neural activity in the human brain and 
the internal activity in LLMs during the processing of natural language (Hasson et al., 
2020; Richards et al., 2019). For example, researchers used encoding models to show 
the brain’s predictive (Goldstein et al., 2022; Schrimpf et al., 2021) and hierarchical 
linguistic processing (Caucheteux et al., 2023; Heilbron et al., 2022); the shared 
underlying geometry (Bhattacharjee et al., 2024; Goldstein et al., 2024); the similarity 
between reading and listening (Deniz et al., 2019); the role of speech in language 
comprehension (Goldstein et al., 2023); and production-comprehension coupling 
between speakers (Zada et al., 2024). 

The following describes the “Podcast” ECoG dataset, including data acquisition and 
preprocessing details. Next, we provide two quality control analyses to ensure the 
neural activity is precisely aligned with the onset of words in the podcast stimulus. 
Finally, we use electrode-wise encoding analysis to test several linguistic features 
against the neural data.  
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Figure 1. Experiment setup and dataset components. (A) A 30-minute audio story (podcast) 
was played to (B) nine participants while undergoing electrocorticographic monitoring for 
epilepsy. We implement a simple preprocessing pipeline to extract the high-gamma band power 
per electrode. (C) We manually transcribed the story and timestamped words at high temporal 
resolution. We extract five linguistic features from the audio waveform and transcript. (D) Some 
analyses depend on word-level epochs, where a window relative to word onset at each word is 
then stacked across words. This forms a matrix of words by the number of lags for each 
electrode. In electrode-wise encoding analysis, we use linear regression to predict the neural 
activity at a particular lag across words, separately for each electrode, depicted as a Y vector in 
(D), from the stimulus features defined in (C). 

Methods 

Participants 
Nine participants underwent clinical intracranial monitoring in the New York University 
School of Medicine’s Comprehensive Epilepsy Center. Participants consented to be 
included in our study following approval by the New York University Langone Medical 
Center’s Institutional Review Board. Clinicians determined electrode location and type 
per participant, based solely on the clinical need of the participant—without regard to 
any research study. Several standard behavioral tests were conducted to assess the 
patient’s memory and linguistic abilities. These include the Verbal Comprehension Index 
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(VCI), Perceptual Organization Index (POI), Processing Speed Index (PSI), and Working 
Memory Index (WMI). Participant data is detailed in Table 1. 

Electrodes were made of platinum-iridium and were embedded in silastic sheets, with 
2.3 mm diameter contacts (Ad-Tech Medical Instrument). Electrodes were grouped into 
three types: grid arrays, linear strips, or depth electrodes. Grid arrays consisted of 8 × 8 
contacts with 5 or 10 mm center-to-center spacing. Three participants (sub-03, sub-06, 
sub-09) consented to a hybrid grid: a standard electrode grid augmented with additional 
electrodes between the standard contacts (i.e., a U.S. Food and Drug 
Administration-approved hybrid clinical research grid). In addition to the 64 standard 
contacts (2 mm diameter), the hybrid grid interleaved 64 additional contacts with 1 mm 
in diameter (these electrodes are labeled as the type “EG” in the dataset). 

Electrode localization 
Each participant underwent a pre-surgical and post-surgical T1-weighted MRI scan. 
These two images were aligned following published methods (Yang et al., 2012). All 
accompanying anatomical scans are anonymized with pydeface (Gulban et al., 2022). 
Electrodes were then localized on the cortical surface from a co-registered MRI or 
computed tomography scan. Montreal Neurological Institute (MNI) electrode 
coordinates were obtained by nonlinearly registering the skull-stripped T1 images to the 
MNI152 template. Not all electrodes were on the brain; for example, some electrodes 
may be on the skull. We identified 80 electrodes that were not localized and were 
marked accordingly in the dataset. 

ECoG data acquisition 
Electrodes were connected to one of two amplifier types: a NicoletOne C64 clinical 
amplifier (Natus Neurologics) that is band-pass filtered from 0.16–250  Hz, and digitized 
at 512 Hz; or a NeuroWorks Quantum Amplifier that is high-pass filtered at 0.01 Hz and 
recorded at 2,048 Hz. All signals were referenced to a two-contact subdural strip facing 
toward the skull near the craniotomy site.  
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Table 1. Participant electrode, demographic, and behavioral information. Acronyms: left 
hemisphere (LH); right hemisphere (RH); verbal comprehension index (VCI); perceptual 
organization index (POI); processing speed index (PSI); and working memory index (WMI); 
ambidextrous (ambi.). 

Stimuli 
The stimulus presented to participants was a segment from the podcast “This American 
Life” entitled “So a Monkey and a Horse Walk Into a Bar: Act One, Monkey in the 
Middle” released on November 10, 2017. The original audio and transcript are freely 
available online (https://www.thisamericanlife.org/631/transcript).  

ECoG preprocessing 
Raw electrode data underwent the following preprocessing pipeline: removing bad 
electrodes, downsampling, despiking and interpolating high amplitude spikes, common 
average re-referencing, and notch filtering. First, we visualized the power spectrum 
density of each electrode per subject. From this, we were able to annotate unusual 
electrodes that did not conform to the expected 1/f pattern, had a consistent oscillatory 
pattern, or showed other unusual artifacts. We found 31 such electrodes and marked 
them as “bad” (identified in the accompanying metadata). The source of these artifacts 
may be due to several factors, including excessive noise, epileptic activity, no noise, or 
poor contact. For data acquired with a sampling rate greater than 512 Hz, we 
downsampled to 512 Hz to match the sampling rate across subjects. We then applied a 
despiking and interpolation procedure to remove time points that exceeded four 
quartiles above the median of the signal and refill it using pchip interpolation. For 
re-referencing, we subtracted the mean signal across all electrodes per subject from 

subject sub-01 sub-02 sub-03 sub-04 sub-05 sub-06 sub-07 sub-08 sub-09 

electrode 
coverage 

total 103 95 264 155 160 171 119 75 188 

LH n/a 95 213 77 159 171 119 75 188 

RH 103 n/a 51 78 1 n/a n/a n/a n/a 

Grid 63 n/a 127 n/a 110 127 63 47 124 

Strip 24 43 65 79 8 8 32 8 40 

Depth 16 52 72 76 42 36 24 20 24 

personal 

sex M F F M M F F M M 

age 28 40 48 25 24 34 28 42 24 

hand R R R R 
ambi. 
L>R R R R R 

behavioral 
tests 

VCI 134 63 107 n/a 96 n/a 100 87 145 

POI 127 79 104 n/a 79 n/a 109 123 96 

PSI 124 84 111 n/a 81 n/a 92 97 86 

WMI 119 89 114 n/a 86 n/a 86 89 95 
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each of their individual electrode time series. Finally, we used notch filters at 60, 120, 
180, and 240 Hz to remove power line noise. This pipeline produces a “cleaned” version 
of the raw signal. 

Linguistic processing may span multiple frequency bands and rely on cross-frequency 
coupling (e.g., Martin, 2020; Murphy, 2024). For the sake of simplicity, we focus on 
high-gamma band power as an index of local, stimulus-driven neuronal activity (Haufe 
et al., 2018; Manning et al., 2009; Mukamel et al., 2005). We extracted the high-gamma 
band by applying a Butterworth band-pass infinite impulse response (IIR) filter at 
70–200 Hz. We extract the broadband power by computing the envelope of the Hilbert 
transform. 

Data Records 

The dataset is freely available on OpenNeuro: https://openneuro.org/datasets/ds005574 
(Markiewicz et al., 2021). Tutorials for usage are available at: 
https://hassonlab.github.io/podcast-ecog-tutorials. We followed the BIDS-iEEG 
(Gorgolewski et al., 2016; Holdgraf et al., 2019) standard for file structures and naming 
conventions. The main directory contains the raw ECoG data for each subject in EDF 
format under the ieeg datatype directory. In addition, channel information and electrode 
localization for MNI and T1 spaces are also located in the same folder, following BIDS 
guidelines. Notably, the channels tsv file contained annotation for each electrode in the 
EDF that denoted whether it’s a “good” or “bad” channel. Bad channels are those that 
are rejected either due to “no localization” or noisy power spectrum density (see “ECoG 
preprocessing” in the “Methods” section). Each subject also has a de-faced T1 
anatomical MRI scan under their respective anat datatype directory. 

The derivatives directory contains the preprocessed ECoG data in MNE .fif format within 
the “ecogprep” subdirectory (inspired by fMRIPrep; (Esteban et al., 2019)). There are 
two versions of the preprocessed data, one is unfiltered and the other is filtered to the 
high-gamma broadband power. In addition, the “ecogqc” subdirectory contains the 
output of a quality-check program in HTML that contains an interactive viewer for 
electrodes and the power spectrum density plots (inspired by MRIQC; (Esteban et al., 
2017)). These were the primary sources used for determining the quality of an 
electrode’s signal. 

The top-level stimuli directory contains the original audio presented to participants in 
.wav format, along with a time-stamped transcript in .csv format. Extracted data from 
each of the five feature spaces is placed in a subdirectory of stimuli denoting its type. 
For example, the stimuli/spectral/ directory contains spectrogram features of the audio 
waveform. Each feature directory contains at least two files: features.hdf5 and 
transcript.tsv. The transcript file is a modified version of the original transcript (under 
stimuli) where a particular feature type may remove or add additional rows or columns 
(e.g., for tokenization). The features file contains the numerical vectors of the feature 
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space as a matrix, where the rows correspond one-to-one to the rows in the transcript 
file. The number of columns varies depending on the dimensionality of the feature 
space. In some cases, such as large language models, this file may include the 
activations of all layers in separate HDF5 groups in the same file. Examples of loading 
and manipulating these files can be found in the accompanying code and tutorials. 

Technical Validation 

Cross-correlation between electrode activity and auditory stimulus 
The first analysis tested electrodes that track the acoustic properties of the stimulus, 
roughly aligning the neural activity with the audio. We cross-correlated the stimulus 
audio envelope with each electrode’s high-gamma broadband power. This analysis was 
used in Honey et al., (2012) to find electrodes that tracked the acoustic properties of the 
stimulus. Similar to their results, we also found a gradient of audio correlations that 
peaks in electrodes closest to the early auditory cortex and decrements along the 
anterior-posterior axis (Figure 2A). We also visualized the average cross-correlation of 
electrodes in the superior temporal cortex in a four-second window. This validation 
analysis reveals that brain activity lags just behind the auditory stimulus, demonstrating 
that the ECoG recordings are closely aligned with the stimulus. 

Electrode-wise evoked response to word onsets 
We used an event-related potential (ERP) analysis as a complementary method to 
confirm the transcript word timings and validate the neural signal. We used the timed 
transcript to epoch the neural data (Figure 1D) and then averaged the neural signal in a 
four-second window around word onset. As expected, electrodes that are sensitive to 
word occurrence increased their activity from baseline (Figure 2B). These electrodes 
were localized in the vicinity of the early auditory cortex in the superior temporal cortex. 
The average evoked response across electrodes in the superior temporal cortex 
exhibited a sharp increase in activity around word onset. 
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Figure 2. Validation of brain activity responses to auditory stimuli. (A) We cross-correlated 
the high-gamma band ECoG signal with the envelope of the audio waveform to validate the 
alignment between the audio and the brain data, especially in the early auditory cortex. (B) For 
each electrode, we computed the average neural responses across words to verify that 
electrodes in the early auditory cortex exhibit increased word-related activity. 

Electrode-wise encoding models for multiple feature spaces 
We used electrode-wise encoding models to measure the neural responses to specific 
features of the podcast stimulus. We extracted five sets of linguistic features from the 
stimulus (Figure 1C). First, we computed a spectrogram from the audio waveform based 
on 80 log mel-spectral bins. We then epoched the spectrogram according to word 
onsets from lag 0 ms to 200 ms and downsampled each epoch to a sampling rate of 10 
Hz. Thus, each word was represented by 10 frames of 80 bins, flattened into an 
800-dimensional vector. Second, we defined a phoneme-based word representation 
using a word-to-phoneme dictionary to create a 40-dimensional binary vector of 
phonemes present in a word. Third, we extracted syntactic features from the transcript 
using spaCy (Honnibal et al., 2020). These features include 45 dependency relations 
and 50 part-of-speech tags, resulting in a 95-dimensional binary vector. Fourth, we 
used spaCy’s en_core_web_lg model to extract 95-dimensional non-contextual word 
embeddings (where the same word is assigned the same embedding regardless of 
context). Fifth and finally, we used HuggingFace (Wolf et al., 2020) to extract LLM 
contextual embeddings from the activations of the middle layer of GPT-2-XL (Radford et 
al., 2019). These feature spaces form the regressors we used to predict the ECoG data. 

We epoched the high-gamma band electrode time series per word from –2 seconds to 
+2 seconds (Figure 1D). Thus, the linear regression model predicts the word-by-word 
fluctuations in neural activity at a specific lag. We used two-fold cross-validation to train 
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separate encoding models for each feature space, electrode, and lag on one half of the 
podcast stimulus. Since different feature spaces are of different dimensionality, we used 
ridge regression where the penalty hyperparameter is learned within the training set 
using the himalaya python library (Dupré La Tour et al., 2022). We evaluated the 
performance of each encoding model on the held-out fold by correlating the 
model-predicted neural activity with the actual neural activity across words in the test 
fold. Finally, we averaged the two correlations for each fold to obtain one correlation 
value denoting the encoding performance for each feature space, electrode, and lag. 

We visualize encoding model performance both spatially (Figure 3A) and temporally 
(Figure 3B). We found that the acoustic and phonetic feature spaces performed well in 
the early auditory cortex (EAC) and mid-superior temporal gyrus (STG). Syntactic 
features and non-contextual embeddings performed well along the STG and extended 
into the inferior frontal gyrus (IFG). LLM contextual embeddings achieved the highest 
encoding performance and for the most number of electrodes. The different feature 
spaces also yielded different temporal profiles across lags relative to word onset. For 
example, LLM embeddings had high encoding performance across the four-second 
window, whereas other feature spaces peaked after word onset (Figure 3B). In 
particular, the acoustic and phonetic features peaked sharply after word onset. We also 
observed certain temporal differences in specific regions. For example, LLM 
embeddings peaked sharply after word onset in IFG, but more broadly in STG (Figure 
3C). Moreover, acoustic features performed better than LLM embeddings in EAC, at 
and after word onset. Altogether, these results validate our procedures for stimulus 
feature extraction, ECoG preprocessing, and temporal alignment between the ECoG 
signals and stimulus. Our findings also suggest that this dataset can serve as a useful 
resource for testing different models of language processing. 
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Figure 3. Encoding model performance for five feature spaces. (A) Maximum encoding 
performance (correlation between model-predicted and actual neural activity) across lags at 
each electrode for five different feature spaces. Electrodes with significant performance (p < .01, 
FDR corrected) for any of the feature spaces are visualized. (B) Comparing encoding 
performance across five different feature spaces and lags relative to word onset. The average 
over all selected electrodes per feature space is plotted. (C) Encoding performance for the 
acoustic, non-contextual word embeddings, and LLM embeddings are visualized for six regions 
of interest: early auditory cortex (EAC), superior temporal gyrus (STG), inferior frontal gyrus (IFG), 
precentral (PRC), middle frontal gyrus (MFG), and temporal pole (TMP). Electrodes are assigned 
regions based on the Destrieux atlas (Destrieux et al., 2010).  

Usage Notes 

We include tutorial notebooks to serve as pedagogical examples for using the data and 
replicating the results presented in this paper. These tutorials are available online at 
https://hassonlab.github.io/podcast-ecog-tutorials and in the supplementary materials. 
We encourage researchers to familiarize themselves with the BIDS-iEEG (Holdgraf et al., 
2019) modality-specific standards to best use the dataset. We also recommend the use 
of MNE tools (Gramfort, 2013) for reading the data (e.g., the preprocessed .fif files and 
to facilitate analyses). The tutorials cover the following topics: downloading data and 
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installing the required libraries, preprocessing ECoG data, running quality control 
analyses, extracting stimuli features, and performing encoding analyses. 

In this paper, we introduced the “Podcast” ECoG dataset and replicated several 
previously published analyses. That said, many of these analyses include several 
simplifying choices and may overlook certain questions of interest. For example, we 
epoch the neural activity word-by-word and train separate models at different lags. 
Linguistic information may be encoded in finer-grained subword dynamics or dynamics 
evolving over the course of word articulation. An alternative method may bypass 
epoching altogether and perform a time-resolved analysis similar to encoding models in 
fMRI (Huth et al., 2016). Furthermore, we index our analyses to the onset of words. 
However, words have different lengths and internal structures; anchoring to the center 
of each word may provide a good compromise (Mischler et al., 2024). Models that 
aggregate features across words (e.g., sentence embeddings; (Muennighoff et al., 
2022)) may also provide novel insights relative to our word-by-word analysis. Our 
analyses use high-gamma band power as an index of neural activity. Linguistic 
information may also be encoded in oscillations at other frequency bands or in 
cross-frequency coupling (e.g., Weissbart & Martin, 2024). Finally, we recommend using 
a variance partitioning analysis (Lescroart et al., 2015) to measure the unique 
contribution of a particular feature set, such as LLMs, relative to other features (see our 
tutorials for an example). 

Code Availability 

Data and code associated with data curation are available on OpenNeuro 
(https://openneuro.org/datasets/ds005574). The code for analyses in this paper is 
available on GitHub (https://github.com/hassonlab/podcast-ecog-paper). Tutorials are 
also available on GitHub (https://hassonlab.github.io/podcast-ecog-tutorials). 
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