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Information processing in the cerebral cortex involves interactions
among distributed areas. Anatomical connectivity suggests that cer-
tain areas form local hierarchical relations such as within the visual
system. Other connectivity patterns, particularly among association
areas, suggest the presence of large-scale circuits without clear hier-
archical relations. In this study the organization of networks in the
human cerebrum was explored using resting-state functional connec-
tivity MRI. Data from 1,000 subjects were registered using surface-
based alignment. A clustering approach was employed to identify and
replicate networks of functionally coupled regions across the cerebral
cortex. The results revealed local networks confined to sensory and
motor cortices as well as distributed networks of association regions.
Within the sensory and motor cortices, functional connectivity fol-
lowed topographic representations across adjacent areas. In associa-
tion cortex, the connectivity patterns often showed abrupt transitions
between network boundaries. Focused analyses were performed to
better understand properties of network connectivity. A canonical
sensory-motor pathway involving primary visual area, putative middle
temporal area complex (MT�), lateral intraparietal area, and frontal
eye field was analyzed to explore how interactions might arise within
and between networks. Results showed that adjacent regions of the
MT� complex demonstrate differential connectivity consistent with a
hierarchical pathway that spans networks. The functional connectivity
of parietal and prefrontal association cortices was next explored.
Distinct connectivity profiles of neighboring regions suggest they
participate in distributed networks that, while showing evidence for
interactions, are embedded within largely parallel, interdigitated cir-
cuits. We conclude by discussing the organization of these large-scale
cerebral networks in relation to monkey anatomy and their potential
evolutionary expansion in humans to support cognition.

prefrontal; parietal; association cortex; functional magnetic resonance
imaging; functional connectivity; default network; connectome

COMPLEX BEHAVIORS ARE SUBSERVED by distributed systems of
brain areas (Felleman and Van Essen 1991; Goldman-Rakic

1988; Mesulam 1990). The organization of these systems can
be studied in nonhuman animals by using invasive techniques
including histology, anatomical tract tracing, electrophysiol-
ogy, and lesion methods. The organization of brain systems in
the human has been inferred by comparing cytoarchitectoni-
cally defined homologies between species and by noting sim-
ilarities in neuropsychological deficits following accidental
brain injury to deficits present in animal ablation studies.
General agreement has emerged from these comparisons that
the basic organization of brain systems is similar across mam-
malian species. However, there is also evidence that the human
cerebral cortex, particularly association cortex, is not simply a
scaled version of other species.

The German anatomist Korbinian Brodmann (1909) first
emphasized that areas comprising the human inferior parietal
lobule do not have clear homologs in the monkey, an obser-
vation that continues to motivate contemporary debates (Orban
et al. 2004). Gross differences are also observed in the human
brain when it is compared to those of our evolutionarily closest
relatives. For example, the human brain is triple the size of
modern great ape brains, but motor and visual cortices are
about the same absolute size (Blinkov and Glezer 1968; Frahm
et al. 1984). This observation suggests that expansion of the
human cerebrum disproportionately involves areas beyond
those subserving basic sensory and motor functions. In a recent
analysis of cortical expansion based on 23 homologous areas
between the macaque and human, Van Essen and colleagues
noted that the greatest growth occurs in regions distributed
across frontal, parietal, and temporal association cortices (Van
Essen and Dierker 2007; Hill et al. 2010). Preuss (2004) came
to a similar conclusion in a detailed review of comparative
anatomy. Thus, in addition to expecting the human brain to
show broadly similar organizational properties with other well-
studied species, expansion and perhaps elaboration of associ-
ation networks is also expected.

In this article we report results of a comprehensive analysis
of networks within the human cerebral cortex using intrinsic
functional connectivity MRI (fcMRI). The analysis was based
on 1,000 young adults who contributed uniformly collected
MRI data. The data were brought into a common surface
coordinate system to help preserve the surface topology of the
cortical mantle. Analyses were motivated by two goals. First,
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we sought to provide reference maps that are a current best
estimate of the organization of the human cerebral cortex as
measured by functional connectivity. Second, we wanted to
better understand how patterns of functional connectivity
might give rise to the organizational properties that underlie
distributed brain systems. Particular focus was placed on pa-
rietal and frontal association cortices. The foundations for the
present work come from traditional anatomical studies of
cortical organization.

Organizational Properties of the Cerebral Cortex in the
Nonhuman Primate

Distributed brain systems are organized to facilitate both
serial and parallel processing (Felleman and Van Essen 1991;
Mesulam 1998). The concept of serial hierarchies is embedded
within early ideas about brain organization. For example,
William James (1890) proposed that principles governing the
reflex arc extend to the cerebral hemispheres. He hypothesized
that excitement of sensory systems propagates upwards from
lower to higher cerebral centers governing “ideas” and then to
centers producing (or inhibiting) movements. Hubel and Wi-
esel (1962) formally proposed the concept of serial processing
across a hierarchy in cat visual cortex based on their observa-
tions of increasingly complex receptive field properties from
the lateral geniculate nucleus (LGN) to the simple and complex
cells of the primary visual cortex (V1). Based on studies of
corticocortical connections in the macaque, Pandya and
Kuypers (1969) and Jones and Powell (1970) suggested that
hierarchical processing across sensory systems converges on
transmodal association areas.

The discovery of widespread connections among multiple
cortical areas, as well as extensive feedback projections from
higher to lower sensory areas, suggested strictly serial process-
ing is not the only organizational scheme in the cerebral cortex.
Instead, it was proposed that hierarchical processing exists in a
distributed fashion that can be inferred from the laminar
distribution of anatomical connectivity (Friedman 1983;
Maunsell and Van Essen 1983; Rockland and Pandya 1979).
The comprehensive meta-analysis of corticocortical connec-
tions in the macaque monkey by Felleman and Van Essen
(1991) provided strong evidence that unimodal and hetero-
modal areas in both the visual and somatomotor systems are
organized into separate distributed hierarchies (also see Unger-
leider and Desimone 1986; Van Essen et al. 1992). Some
projections between areas are organized as feedforward (as-
cending) projections, others as feedback (descending) projec-
tions, and still others as lateral projections. For example,
consistent with serial processing, the primary visual area (V1)
sends forward connections to and receives feedback connec-
tions from V2 in a topographic fashion that connects the
corresponding receptive field representation in each area. In
contrast to strictly serial processing, these unimodal sensory
cortical areas (V1 and V2) both project to higher sensory areas.
Lateral projections between areas are also common [e.g.,
central inferior temporal area (CIT) and posterior superior
temporal polysensory area (STPp)].

It becomes considerably more difficult to make inferences
about the organization of circuits involving association cortex.
Historically, of the four criteria (function, cytoarchitecture,
connectivity, and topography) used to define cortical areas and

thereby constrain models of organization, topography (e.g.,
retinotopy) and function are difficult to discern in heteromodal
association areas. Cytoarchitecture and connectivity thus be-
come especially valuable for inferring brain circuit organiza-
tion beyond the sensory and motor systems. However, as noted
by Felleman and Van Essen (1991), the number of violated
constraints to hierarchical connectivity increases in the pro-
gression from early sensory cortex up to association cortex (red
lines near the top of the visual hierarchy in Fig. 4 of Felleman
and Van Essen 1991).

This raises the interesting possibility that the association
areas may not follow as rigid a hierarchical organization as
canonical sensory and motor areas. Violations of strict hierar-
chical arrangements are apparent in the visual system as noted
above, but violations and alternative connectivity patterns
become common in association areas. For example, paired
tracer injections in association areas 7a and 46 lead to inter-
digitating columnar patterns of terminations in some areas and
complementary (feedforward and feedback) patterns in other
areas (Selemon and Goldman-Rakic 1988).

While recognizing that convergence and integration of path-
ways occur in the association cortex, Goldman-Rakic (1988)
emphasized that primate association cortex is organized into
parallel distributed networks (see also Mesulam 1981). There
are two key features to her proposed organization that depart
from hierarchical organizational models. First, each distributed
network consists of association areas spanning frontal, parietal,
temporal, and cingulate cortices. Networks are densely inter-
connected such that two areas in the parietal and frontal
cortices belonging to the same network are not just anatomi-
cally connected to each other, but they are also both connected
with other components of the same network (Selemon and
Goldman-Rakic 1988). Second, multiple distributed networks
exist adjacent to each other: adjacent areas in the parietal
cortex belonging to separate networks are differentially con-
nected to adjacent areas of corresponding networks in the
frontal, temporal, and cingulate cortices (Cavada and Gold-
man-Rakic 1989a, 1989b).

The possibility of parallel distributed circuits is an important
consideration in our analysis of fcMRI networks in the human,
particularly within association cortices. An intriguing possibil-
ity is that the majority of the human cerebral cortex involves
multiple parallel circuits that are interdigitated throughout
association cortex such that each cortical lobe contains com-
ponents of multiple association networks. That is, the expan-
sion of the cerebral association cortex in humans relative to
that in the monkey may preferentially involve networks orga-
nized in the form outlined by Goldman-Rakic (1988) and
anticipated by others (e.g., Mesulam 1981). To explore this
possibility, our analyses focus on evidence for hierarchical
relations across regions as well as evidence for distributed
networks that are interdigitated throughout association cortex.

Insights Into the Organization of the Cerebral Cortex
Revealed Through Neuroimaging

Noninvasive neuroimaging methods including positron
emission tomography (PET; Raichle 1987) and functional MRI
(fMRI; Kwong et al. 1992; Ogawa et al. 1992) allow functional
response properties to be measured in the human cerebral
cortex. The measures are indirect, reflecting blood flow and
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oxygenation changes that are coupled to neural activity through
incompletely understood mechanisms (Logothetis 2008), and
the methods are presently limited to a spatial resolution of a
few millimeters (e.g., Engel et al. 1997). Neuroimaging ap-
proaches have nonetheless been extremely valuable for provid-
ing insights into cortical organization. In some cases it has
been possible to directly map the topography within (and
borders between) cortical areas (Engel et al. 1994; Sereno et al.
1995). More generally, differential response properties be-
tween regions are the source of information about cortical
mapping. For example, the increase in the complexity of
receptive field properties measured from primary to secondary
sensory areas in visual (Wandell et al. 2007), somatosensory
(Iwamura 1998), and auditory cortices (Wessinger et al. 2001)
suggest that serial hierarchical processing exists in human
sensory cortex.

Neuroimaging studies of a wide range of cognitive tasks
reveal simultaneous activation in multiple regions in the pari-
etal, frontal, temporal, and cingulate cortices, suggesting dis-
tributed systems of brain areas are involved in cognition.
However, it is difficult to assess the organization of these
distributed systems based solely on task activity because these
cognitive tasks likely tap into multiple, overlapping processes,
some of which reflect the operation of distributed systems and
others which reflect distinct processing demands of the tasks
(see Mesulam 1990 and Posner et al. 1988 for relevant discus-
sion). For these reasons, methods that can measure connectiv-
ity may provide novel insights into the organization of distrib-
uted brain systems.

Functional Connectivity and Diffusion MRI Provide Tools to
Explore Cortical Organization

Diffusion MRI (dMRI) and fcMRI have recently emerged as
promising tools for mapping the connectivity of the human
brain, each with distinct strengths and weaknesses. dMRI
measures the diffusion of water, thus allowing direct noninva-
sive mapping of white matter pathways (Basser et al. 1994).
However, dMRI is presently limited to resolving major fiber
tracts. By contrast, fcMRI measures intrinsic functional corre-
lations between brain regions (Biswal et al. 1995) and is
sensitive to coupling between distributed as well as adjacent
brain areas (e.g., see Sepulcre et al. 2010 for discussion).
Although not a direct measure of anatomical connectivity, the
functional couplings detected by fcMRI are sufficiently con-
strained by anatomy to provide insights into properties of
circuit organization (for reviews, see Fox and Raichle 2007;
Van Dijk et al. 2010). When describing these correlations, we
use the term functional connectivity as coined by Karl Friston
(1994) to denote “temporal correlations between remote neu-
rophysiological events” for which the causal relation is unde-
termined.

There are important limitations of fcMRI, including sensi-
tivity to indirect anatomical connectivity and functional cou-
pling that changes in response to recent experience and the
current task being engaged (Buckner 2010). For these reasons,
some discussions of fcMRI have emphasized that intrinsic
activity measured by fcMRI reflects the prior history of activity
through brain systems and not simply static anatomical con-
nectivity (Power et al. 2010). fcMRI also does not presently
provide information about whether connections are feedfor-

ward (ascending) or feedback (descending). These limitations
constrain how analyses are conducted and results can be
interpreted.

Directly relevant to the present study, prior investigations
using fcMRI provide estimates of large-scale cortical networks
that have generally (but not in all details) converged across a
variety of analytic approaches, including seed-based fcMRI
(Biswal et al. 1995), independent component analysis (Beck-
mann and Smith 2004; Smith et al. 2009), clustering (Bellec et
al. 2010; Golland et al. 2007), and graph theory (Dosenbach et
al. 2007). Because of uncertainties regarding their relation to
underlying anatomical brain systems, networks identified using
fcMRI have often been labeled on the basis of their relations to
task-based functional networks. Some of these networks, such
as the default network (Greicius et al. 2003) and dorsal atten-
tion system (Fox et al. 2006), have been proposed to be related
to anatomical tracing and task-based fMRI in the macaque
(Buckner et al. 2008; Saleem et al. 2008; Vincent et al. 2007).

Motivated by the usefulness of connectivity in establishing
the organization of the cerebral cortex in nonhuman primates,
this study analyzed fcMRI data from 1,000 subjects with two
main goals. First, the analyses sought to provide reference
maps that are a current best estimate of the organization of
human cortical networks as measured by functional connectiv-
ity. Second, by using the power of a large data sample to
quantitatively measure functional connectivity strength among
many regions, the study explored the patterns of corticocortical
functional coupling that give rise to these networks.

METHODS

Overview

The present study explored the organization of large-scale distrib-
uted networks in the human cerebral cortex using resting-state fcMRI.
The main analyses were based on a core dataset of 1,000 healthy,
young adults whose fMRI data were acquired using the same MRI
sequence on the same hardware (3-Tesla field strength, 12-channel
receive coil array). For several analyses the data were divided into
discovery (n � 500) and replication (n � 500) data samples to test for
reliability and for unbiased quantification of functional connectivity
patterns. Additional supplementary datasets were used to address
specific questions that arose during analysis. A first supplementary
fMRI data set (n � 16) contrasted different passive tasks engaged
during resting-state functional data acquisition. A second supplemen-
tary fMRI data set (n � 4) consisted of data acquired during visual
stimulation optimized to define retinotopic boundaries of early visual
areas (Hinds et al. 2009; Polimeni et al. 2005). A final supplementary
data set used human histological data to define a range of cytoarchi-
tectonic areas including human V1 (Amunts et al. 2000, Fischl et al.
2008) and the putative homolog to macaque middle temporal area
complex (MT�; Malikovic et al. 2007, Yeo et al. 2010b). All data
(fMRI and histological) were brought into a common surface coordi-
nate system based on the cortical surface as reconstructed from each
participant’s structural anatomy. Data analyses began by examining
broad properties of cortical network organization and progressed to
quantify the detailed patterns of functional connectivity within and
between networks.

In the first set of analyses, a clustering algorithm was used to
parcellate the cerebral cortex into networks of functionally coupled
regions. Parcellations were examined for a coarse solution that orga-
nized the cortex into 7 networks as well as a finer solution that
identified 17 networks. As the results reveal, the estimated networks
were consistent across the discovery and replication data samples and
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were confirmed by region-based fcMRI analyses. The full data set was
used to construct a best-estimate parcellation of the human cerebral
cortex to serve as a reference for future studies.

The second set of analyses explored the coupling of regions that
fell within sensory and motor pathways. Since these areas are rela-
tively well understood in both humans and macaques, they provide the
opportunity to evaluate the utility and limitations of functional con-
nectivity methods. Analyses examined quantitative coupling proper-
ties between individual regions that were within the same network as
well as coupling properties between networks focusing on a sensory-
motor pathway that is the putative homologue of the well-studied
system in the monkey involving MT�, parietal regions at or near
lateral intraparietal area (LIP), and premotor regions at or near frontal
eye field (FEF).

The final set of analyses characterized the organization of distrib-
uted networks in higher order association cortex. The connectivity
patterns of regions within frontal and parietal association cortices
were quantified. These analyses involved constructing a series of
small seed regions across frontal and parietal cortices and examining
functional connectivity strength to multiple regions distributed
throughout the cerebral cortex, allowing the “fingerprint” of func-
tional coupling to be identified for each region. For these analyses,
regions were always defined in the discovery data sample or some
other source, such as histology, and functional connectivity was
quantified in the independent replication data sample.

Participants

Paid participants were clinically healthy, native English-speaking
young adults with normal or corrected-to-normal vision (ages 18–35
yr). Subjects were excluded if their fMRI signal-to-noise ratio (SNR)
was low (�100; see below), artifacts were detected in the MR data,
their self-reported health information indicated the presence of any
prior neurological or psychiatric condition, or they were taking any
psychoactive medications. The core data set consisted of 1,000 indi-
viduals imaged during eyes open rest (EOR) and was divided into two
independent samples (each n � 500; labeled the discovery and
replication samples). Age and sex were matched for the discovery
(mean age � 21.3 yr, 42.6% male) and replication (mean age � 21.3
yr, 42.8% male) data sets. These data are new data presented for the
first time in this study and were acquired as part of a collaborative
effort across multiple local laboratories all acquiring data on matched
MRI scanners (at Harvard and at the Massachusetts General Hospital).
Participants provided written informed consent in accordance with
guidelines set by institutional review boards of Harvard University or
Partners Healthcare.

Two smaller supplementary data sets were also analyzed. The task
effect data set (n � 16, mean age � 21.1 yr, 25.0% male) consisted
of fMRI data collected under different passive conditions (eyes closed
rest, ECR; EOR; and fixation, FIX) and was analyzed previously (Van
Dijk et al. 2010). The visuotopic dataset (n � 4; mean age � 34.5 yr,
100% male) consisted of previously published visuotopic data (Hinds
et al. 2009; Polimeni et al. 2005).

MRI Data Acquisition

All data were collected on matched 3T Tim Trio scanners (Sie-
mens, Erlangen, Germany) using a 12-channel phased-array head coil,
except for the visuotopic data set, which was acquired on a custom-
built 4-channel phased-array surface coil. A software upgrade (VB15
to VB17) occurred on all scanners during the study. Validation studies
that acquired structural and functional data on the same individuals
before and after the upgrade could not detect an effect of the upgrade.
The functional imaging data were acquired using a gradient-echo
echo-planar imaging (EPI) sequence sensitive to blood oxygenation
level-dependent (BOLD) contrast. Whole brain coverage including
the entire cerebellum was achieved with slices aligned to the anterior

commissure-posterior commissure plane using an automated align-
ment procedure, ensuring consistency among subjects (van der Kouwe
et al. 2005). Structural data included a high-resolution multiecho
T1-weighted magnetization-prepared gradient-echo image (multiecho
MP-RAGE; van der Kouwe et al. 2008).

For the core data set, subjects were instructed to remain still, stay
awake, and keep their eyes open. EPI parameters were as follows:
repetition time (TR) � 3,000 ms, echo time (TE) � 30 ms, flip angle
(FA) � 85°, 3 � 3 � 3-mm voxels, field of view (FOV) � 216, and
47 axial slices collected with interleaved acquisition and no gap
between slices. Each functional run lasted 6.2 min (124 time points).
One or two runs were acquired per subject (average of 1.7 runs).
Parameters for the structural scan (multiecho MP-RAGE; van der
Kouwe et al. 2008) were as follows: TR � 2,200 ms, inversion time
(TI) � 1,100 ms, TE � 1.54 ms for image 1 to 7.01 ms for image 4,
FA � 7°, 1.2 � 1.2 � 1.2-mm voxels, and FOV � 230. The
multiecho MP-RAGE allows increased contrast through weighted
averaging of the four derived images.

For the task effect data set, subjects were instructed to remain still
with their eyes open (EOR; 2 runs) or closed (ECR; 2 runs) or to
passively fixate a centrally presented crosshair (FIX; 2 runs). For
details, see Van Dijk et al. (2010). The order of rest conditions was
counterbalanced across subjects. EPI parameters were as follows:
TR � 3,000 ms; TE � 30 ms; FA � 90°; 3 � 3 � 3-mm voxels;
FOV � 288, and 43 slices collected with interleaved acquisition
and no gap between slices. Each functional run lasted 5.20 min
(104 time points). Parameters for structural scans (MP-RAGE)
were as follows: TR � 2,530 ms, TI � 1,100 ms, TE � 3.44 ms,
FA � 7°, 1 � 1 � 1-mm voxels, and FOV � 256.

The visuotopic data set was collected using a custom-built four-
channel phased-array surface coil placed at the back of the head.
During each functional run, subjects were presented with one of four
visual stimuli: a clockwise rotating wedge, a counterclockwise rotat-
ing wedge, an expanding ring, or a contracting ring (DeYoe et al.
1996; Engel et al. 1994; Sereno et al. 1995). Because the four-channel
surface coil provided only partial brain coverage, structural data for
these four subjects were collected separately on a 1.5T Allegra
scanner (Siemens). Further details of the acquisition and data process-
ing protocol can be found elsewhere (Hinds et al. 2009; Polimeni et al.
2005).

Except where noted, the description of data processing and analysis
below applies to the whole brain data (the core data set of 1,000
subjects and the task effect data set) and not the visuotopic data.

Functional MRI Data Preprocessing

The fMRI data were preprocessed with a series of steps common to
fMRI analyses. Preprocessing involved 1) discarding the first four
volumes of each run to allow for T1-equilibration effects, 2) compen-
sating for slice acquisition-dependent time shifts per volume with
SPM2 (Wellcome Department of Cognitive Neurology, London, UK),
and 3) correcting for head motion using rigid body translation and
rotation with the FSL package (Jenkinson et al. 2002; Smith et al.
2004).

The data underwent further processing using procedures adapted
from Biswal et al. (1995) and optimized for fcMRI analysis (Fox et al.
2005; Van Dijk et al. 2010; Vincent et al. 2006). Briefly, constant
offset and linear trend over each run were removed and a temporal
filter was applied to retain frequencies below 0.08 Hz. Sources of
spurious variance, along with their temporal derivatives, were re-
moved through linear regression, including 1) six parameters obtained
by correction for rigid body head motion, 2) the signal averaged over
the whole brain, 3) the signal averaged over the ventricles, and 4) the
signal averaged over the deep cerebral white matter. This regression
procedure minimized signal contributions of nonneuronal origin,
including respiration-induced signal fluctuations (Van Dijk et al.
2010). Unlike previously established fcMRI preprocessing proce-
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dures, no spatial smoothing of the resting-state data occurred up to this
point of the preprocessing stream.

Structural MRI Data Preprocessing and
Functional-Structural Data Alignment

The structural data were processed using the FreeSurfer (http://
surfer.nmr.mgh.harvard.edu) version 4.5.0 software package. Free-
Surfer constitutes a suite of automated algorithms for reconstructing
accurate surface mesh representations of the cortex from individual
subjects’ T1 images (Fig. 1, B and C) and the overlay of fMRI on the
surfaces for group analysis (Fig. 1E). Briefly, the cortical surface
extraction process (Fig. 1, B and C) involved 1) correcting for
intensity variations due to MR inhomogeneities (Dale et al. 1999),
2) removing extracerebral voxels through “skull-stripping” (Ségonne et
al. 2004), 3) segmenting cortical gray and white matter voxels based
on the intensity difference and geometric structure of the gray-white
interface (Dale et al. 1999), 4) computing cutting planes to disconnect
the two hemispheres and subcortical structures (Dale et al. 1999),
5) filling the interior holes of the segmentation using a connected-
component analysis (Dale et al. 1999), 6) tessellating a triangular
mesh over the gray-white boundary of each hemispheric volume and
deforming the mesh to produce a smooth representation of the gray-
white interface and pial surface (Dale et al. 1999), and 7) correcting
topological defects in the surface so that the mesh achieves a spherical
topology (Fischl et al. 2001; Ségonne et al. 2007).

After segmentation of the cortical surface, spatial correspondences
among the subjects’ cortical folding patterns were established via
the use of a spherical coordinate system (Fig. 1, D and E). Briefly, the
process involved 1) inflating each subject’s surface mesh into a sphere
while minimizing geometric distortion of the original cortical surface
as measured by geodesic distances among surface vertices and ensur-

ing the inflation constituted a one-to-one mapping, and 2) computing
a smooth, invertible deformation of the resulting spherical mesh to a
common spherical coordinate system that aligned the cortical folding
patterns across subjects (Fischl et al. 1999a, 1999b).

Once the common spherical coordinate system was established, the
structural and functional images were aligned (Fig. 1, A and B) using
boundary-based registration (Greve and Fischl 2009) that is provided
as part of FreeSurfer’s companion package, FsFast (http://surfer.
nmr.mgh.harvard.edu/fswiki/FsFast). The preprocessed resting-state
fMRI data were then propagated to the common spherical coordinate
system via sampling from the middle of the cortical ribbon in a single
interpolation step (Fig. 1, A–E). The choice of sampling fMRI data
from the middle of the cortical ribbon was motivated by the desire to
reduce the blurring of fMRI signal across sulci or gyri and also by a
recent study on the point-spread function of fMRI (Polimeni et al.
2010). The study showed that large draining vessels on the pial
surface increased BOLD signal close to the pial surface but reduced
spatial specificity of the hemodynamic response. Sampling fMRI data
from the middle of the cortical ribbon therefore represented a trade-off
between spatial specificity and signal sensitivity. Since our fMRI
voxels were relatively large (3 mm), we were not as concerned about
laminar bias in the functional connectivity analysis.

The cerebral cortex is a thin sheet, with common organizational
features along its radial axis. Along the dimensions parallel to this
sheet is a mosaic of cortical areas that differ in function, cytoarchi-
tecture, connectivity, and topography (Felleman and Van Essen 1991;
Kaas 1987). The spherical representation of the cortex therefore
affords a more accurate alignment of the cortical folding pattern and
has the consequence of improving cytoarchitectonic (Fischl et al.
2008; Hinds et al. 2008; Yeo et al. 2010a) and functional (Fischl et al.
1999b; Van Essen 2005) correspondences across subjects compared
with three-dimensional volumetric registration, even though cortical

Fig. 1. Surface coordinate system for func-
tional magnetic resonance imaging (fMRI)
analysis. For each subject, the T2* images
yielding blood oxygenation level-dependent
(BOLD) contrast fMRI data (A) were regis-
tered to the T1-weighted structural data (B).
The cortical gray-white and pial surfaces were
estimated from the structural data. The red
lines show the estimated gray-white surface
(A and B). Pial surface is shown in C. The
gray-white surface was inflated into a sphere
(D). The inflated spheres were then aligned
across subjects using surface-based registra-
tion of the cortical folding pattern, resulting in
a common spherical coordinate system (E).
BOLD data of individual subjects (A) can
then be projected onto the spherical coordi-
nate system (E) in a single transformation
step to reduce artifacts due to multiple
interpolations.
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folds do not completely predict cytoarchitecture or function (Ra-
jkowska and Goldman-Rakic 1995; Thirion et al. 2007; Yeo et al.
2010b). The acquisition resolution and inherent limitations of the
BOLD signal also provided restrictions on achievable resolution.

A 6-mm full-width half-maximum (FWHM) smoothing kernel was
applied to the fMRI data in the surface space, and the data were
downsampled to a 4-mm mesh.1 Smoothing after the fMRI data were
projected onto the surface helped to minimize the blurring of fMRI
signal across sulci or gyri. Since our algorithms are not perfectly
accurate, any registration or segmentation errors will likely cause
blurring of fMRI signal across sulci or gyri. Consequently, we did not
expect to eliminate the blurring issues completely, which is important
to keep in mind when interpreting the results. The steps taken could
only minimize the problem.

The processing of the visuotopic data set was broadly similar
except that older versions of FreeSurfer and FsFast were used for the
processing, so manual interventions were required to correct the T2*
to T1 registration. Details of the processing can be found elsewhere
(Hinds et al. 2009; Polimeni et al. 2005).

Quality Control

Visual inspection of the registered data suggested that accurate
representation of the cortical surface was extracted for each subject
and that structural and functional image registration was successful.
Figure 2 shows the results of cortical surface extraction from the T1
images and T2* to T1 registration of three randomly chosen subjects.
These examples represent typical subjects. Note that functional data
distortion remains in areas prone to susceptibility artifacts, including
anterior prefrontal regions, regions near lateral temporal cortex, and
orbital frontal cortex.

Visualization

Although all subsequent analyses were performed in FreeSurfer
surface space, for the purpose of visualization, all maps were trans-
formed and displayed on the inflated PALS cortical surfaces using
Caret software (Van Essen 2004, 2005; Van Essen and Dierker 2007).
In addition, this study also transformed and visualized the estimated
networks in FMRIB Software Library (FSL) MNI152 space (Smith et
al. 2004). The mapping between FSL MNI152 volumetric space and
FreeSurfer surface space is detailed in our companion study (Buckner
et al., in press).

SNR Maps

Signal loss and distortion (susceptibility artifacts) occur as a
result of magnetic field inhomogeneities. Field inhomogeneities
are particularly pronounced in regions where the brain is adjacent
to air, causing signal loss and distortion in T2*-dependent (BOLD)
images (Ojemann et al. 1997). To estimate the effects of suscep-
tibility artifacts in the present data, we computed the SNR of the
motion-corrected fMRI time series for each voxel in subjects’
native volumetric space by averaging the signal intensity across the
whole run and dividing it by the standard deviation over time. SNR
was also used as exclusionary criteria. If the SNR for the whole
brain (mean SNR over all voxels within the brain mask) was �100
for an fMRI run, the subject was excluded. Thus all 1,000 subjects
contributed data with SNR � 100 for each fMRI run. For subjects

with two runs, the SNR was averaged across the runs. The SNR
was then projected to FreeSurfer surface space, averaged across the
1,000 subjects from the core data set, and displayed in Caret PALS
space (Fig. 3). As expected, low SNR is present in the anterior
portion of the inferior and medial temporal lobe, as well as in the
orbital frontal cortex. There is also clear spatial variation in the
SNR across the cortical mantle, which is important to keep in mind
when interpreting the results, such as the absence of a cortical
region of low SNR from a network.

Clustering

We applied a clustering approach to define the boundaries of
functionally distinct cortical regions and their relations to regions
distributed throughout the cerebral cortex (forming networks).
Distinguishing neighboring cortical regions by their pattern of
connectivity has a long history in both nonhuman primate (e.g.,
Cavada and Goldman-Rakic 1989a; Goldman-Rakic 1988; Pass-
ingham et al. 2002) and human research (e.g., Cohen et al. 2008;
Johansen-Berg et al. 2004; Nelson et al. 2010). We began our
analyses by defining cortical networks to be sets of cortical regions
with similar profiles of corticocortical functional connectivity. The
idea follows the empirical finding that in primates, regions of
association cortex that are anatomically connected tend to have
similar patterns of anatomical connectivity to other cortical and
subcortical regions, thus forming a densely connected distributed
network (Goldman-Rakic 1988). Note that this assumption about
the organizational properties of corticocortical connectivity is
probably neither a characteristic of all cortical regions nor a full
characterization of the connectivity pattern of any cortical region.
As will be shown, the procedure identified functionally coupled
networks that could be verified with seed-based regional analyses
that made no assumptions about the connectivity patterns.

For this initial analysis, we defined the connectivity profile of a
cortical region to be its functional coupling to 1,175 region of
interest (ROI) vertices. The 1,175 ROI vertices were uniformly
sampled in FreeSurfer surface space (shown in Caret PALS space
in Fig. 4) and consisted of single vertices spaced about 16 mm
apart. For each subject, we computed the Pearson’s product mo-
ment correlation between the fMRI time series at each spatial
location (18,715 vertices) and the 1,175 ROI vertices. Each spatial
location is therefore characterized by its functional coupling to the
1,175 ROI vertices. We binarized the 18,715 � 1,175 matrix of
correlations for each subject by keeping the top 10% of the
correlations and averaged the binarized matrices independently
across each group of 500 subjects in the discovery and replication
samples. If a subject had two runs, we averaged the correlation
matrices across the two runs before binarization. Binarization of
the correlation matrix leads to significantly better clustering re-
sults, although the algorithm appears robust to the particular choice
of threshold. Visual inspection of the connectivity profiles (not
shown) suggested that the 1,175 ROI vertices were sufficiently
dense to capture spatial variation in corticocortical connectivity
given the limits of our acquisition procedures.

A clustering algorithm was then applied separately to the discovery
and replication samples to estimate networks of cortical regions with
similar connectivity profiles. The two independent data sets thus
allowed exploration of the reliability of estimated networks. The idea
behind clustering can be illustrated with a toy example. Figure 5A
shows hypothetical points scattered in a structured fashion on a
two-dimensional canvas. Clustering aims to recover this structure by
dividing the points into different groups so that points within a group
are physically close, as shown in Fig. 5B.

The clustering algorithm employed in this study modeled the
data with a von Mises-Fisher distribution (Lashkari et al. 2010).
More specifically, the data were modeled as 18,715 points on an
1,174-dimensional unit hypersphere embedded in an 1,175-dimen-

1 It is not possible to generate a high-resolution uniform mesh on the sphere.
However, one can work with approximately uniform spherical meshes at
different spatial resolutions by starting with a regular icosahedron mesh
consisting of 20 equal faces and 12 vertices and iteratively subdividing each
mesh triangle into 4 smaller triangles. Here each cortical hemisphere is
represented by a subdivided icosahedron mesh with 20,480 faces and 10,242
vertices, where neighboring pairs of vertices are on average 3.8 mm apart
(maximum � 4.1 mm, minimum � 3.4 mm).
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sional Euclidean space, where distances between points were
measured by their geodesic distance on the hypersphere. Like the
toy example, clustering aims to group vertices that are close
together in this non-Euclidean canvas (i.e., have similar connec-
tivity profiles) into the same cluster or network. Measuring
distances between points by their geodesic distance is equivalent to
defining the similarity between two correlation profiles to be the
correlation between the correlation profiles. By using correlation as
a measure of similarity, differences in correlation strength were

normalized among points so that regions are clustered together
based on their connectivity profiles (rather than their strengths of
connectivity). In theory, this should mitigate some of the effects of
spatial variation in SNR (Fig. 3).

The algorithm operated by randomly assigning the 18,715 points
to different groups and then iteratively reassigning the group
memberships of points to maximize the agreement of connectivity
profiles among points of the same group. More details of the
clustering algorithm can be found elsewhere (Lashkari et al. 2010).

Fig. 2. Examples of intrasubject surface extrac-
tion and registration of structural-functional im-
ages. Examples of extracted cortical gray-white
surfaces (red lines) are overlaid on T2* and T1
images of 3 random subjects in their native T1
space. Imperfections are apparent in BOLD data,
especially in regions of susceptibility artifact
(e.g., orbital frontal cortex).
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Stability Analysis

A drawback of most clustering approaches is that one must choose
the number of clusters a priori. In this instance the question is, how
many clusters (cerebral networks) are needed to correctly parcellate
the cortex? We do not have an answer to this question or know if there
is a single correct answer given that the cerebral cortex possesses
complex patterns of diverging and converging connections among
areas. As such, none of our conclusions will depend on a strong
assumption that there is a single correct solution to parcellating the
cortex. Nonetheless, we sought a principled approach to identify
parcellation solutions that captured significant portions of the corre-
lation structure among cortical regions.

One popular method for estimating the number of clusters is by
analyzing the stability of the clustering algorithm (Ben-Hur et al.
2002; Lange et al. 2004; also see Fig. 5). We employed two variations
of the stability analysis on the full set of 1,000 subjects. Both
variations estimated the same numbers of clusters. The first variation
involved (repeatedly and randomly) dividing the ROIs into two
groups and measuring the reproducibility of the clustering algorithm’s
results when applied separately to the two groups of ROIs. The second
variation involved (repeatedly and randomly) dividing the 18,715
vertices into two groups and applying the clustering algorithm sepa-
rately to the two groups of vertices. The model parameters learned
from clustering one group of vertices were then used to predict the
clustering results of the second group of vertices. The agreement
between the prediction and clustering results of the second group
measured the generalization power of the clustering results (Fig. 6).
Further details of the stability analysis can be found elsewhere (Lange
et al. 2004).

The stability analyses (Fig. 6) suggested 7 and 17 networks were
appropriate starting points for parcellating the cortex. As the results
reveal, these parcellation solutions were excellent for capturing sig-
nificant components of the regional variation that could be replicated
across data sets and independently revealed by seed-based analyses.
However, the focus on 7- and 17-network solutions should not be
taken to imply that meaningful properties are absent in alternative
parcellation schemes. By focusing on both a relatively coarse solution

Fig. 5. Toy example illustrating clustering. A: hypothetical points are scattered
in a structured fashion on a 2-dimensional canvas. Clustering aims to recover
the underlying structure. B: example solutions for M � 2, 3, 4, or 5 clusters are
shown. The solutions for M � 2 or 5 clusters agree with visual assessment of
the underlying structure and are therefore useful representations. On the other
hand, seeking 3 or 4 clusters does not lead to satisfying solutions because
solutions are ambiguous. For example, the M � 3 solution is not unique in the
sense that an “equally good” alternate solution is for one group of points in the
red cluster to be grouped with the orange cluster. Seeking M � 3 or 4
clusters is therefore unstable in the sense that different random initializa-
tions of the clustering algorithm lead to different “equally good” solutions.
In the present study we employed a stability analysis to estimate the
numbers of clusters and also examined both a relatively coarse solution (7
networks) and a fine-resolution solution (17 networks) to survey the
solution space broadly (see Fig. 6).

Fig. 3. Signal-to-noise ratio (SNR) maps of the functional data from the full
sample (N � 1,000). The mean estimate of the BOLD fMRI data SNR is
illustrated for multiple views of the left hemisphere in Caret PALS space. A,
anterior; P, posterior; D, dorsal; V, ventral.

Fig. 4. Cortical regions utilized in constructing functional connectivity profiles.
A total of 1,175 regions were sampled uniformly on the surface-based
representations of the left and right hemispheres within the FreeSurfer surface
coordinate system and are shown in Caret PALS space, where each dark patch
represents the location of a single regional vertex. Each vertex in the surface
coordinate system is characterized by its profile of functional connectivity to
the 1,175 regions. The visually nonuniform distribution of the regions in Caret
PALS space is due to the nonlinear deformation from FreeSurfer space to Caret
PALS space. This image thus also serves to illustrate the subtle differences
between the 2 surface coordinate systems.
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(7 networks) and a fine-resolution solution (17 networks), we were
able to survey the solution space broadly.

Parcellation Maps

Parcellation maps of the cerebral cortex were generated for both
7-network and 17-network solutions for the discovery sample and
replicated in the replication sample. The reliability analysis was
conducted to illustrate the stability of the topographic boundaries on
which the solutions converged. In this regard, a powerful feature of
analyzing large data samples is that the analyses are able to detect the
presence of stable cerebral networks and also to establish the bound-
aries of regions with a high degree of confidence, including contigu-
ous regions that may be part of distinct networks. As a final step, the
full sample (N � 1,000) was used to compute parcellations that
represent our best estimates of the networks (see Figs. 11 and 13).

Confidence Maps

A useful visualization of the cortical parcellation is to look at the
confidence of each spatial location belonging to its assigned network.
We used the silhouette measure (Rousseeuw 1987) from the clustering
literature for this purpose (see Figs. 8 and 10). The silhouette of a data
point (spatial location in our case) measures the similarity (correlation
in our case) of the data point to other data points of the same cluster
(network in our case) compared with data points belonging to the next
closest cluster. The resulting silhouette at each spatial location lies
between �1 and 1 so that a larger value indicates higher confidence
of the spatial location in belonging to its assigned network. A negative
value indicates that the connectivity profile at the spatial location is on
average closer to the next closest cluster than to its assigned cluster.
A negative value is therefore unlikely but is still possible because the
clustering cost function is not equivalent to the silhouette measure.

Correlation Maps and Correlations Between Regions

Large-scale cortical networks can be reliably estimated. To better
understand the meaning of the networks resolved by the clustering

technique, we followed up all salient results with focused analyses
using seed-based regional analysis. The coordinates for all seed
regions used in these analyses can be found in Tables 1–5. For these
analyses, group-averaged functional connectivity maps were used to
inspect the validity of clustering results and to visualize differences in
connectivity patterns of regions in sensory and association cortices.

Each region consisted of single surface vertex (�4 � 4 mm) but
should be considered spatially more extensive because of the spatial
smoothing and intersubject averaging. Correlation maps were ob-
tained by computing the Pearson’s product moment correlation be-
tween the region’s preprocessed resting fMRI time course and the
time courses of all other vertices across the cortical mantle. To obtain
a group-averaged correlation z-map, the correlation map of each
subject in the group was converted to individual subject z-map using
Fisher’s r-to-z transformation and then averaged across all subjects in
the group. The Fisher’s r-to-z transformation increases normality of
the distribution of correlations in the sample. For subjects with
multiple runs, the individual subject z-maps were first averaged across
the runs before submitting to the group average. An inverse Fisher’s
r-to-z transformation was then applied to the group-averaged corre-
lation z-map, yielding a group-averaged correlation map.

To quantify functional connectivity among regions, Fisher’s r-to-
z-transformed correlations were computed among the regions for each
subject within a group. For several targeted, a priori analyses, classical
statistical tests, including t-tests (e.g., see Figs. 20 and 21) and
ANOVA (e.g., see Figs. 22 and 27), were performed on the z-trans-
formed correlations using Matlab 7.4 (The Mathworks, Natick, MA)
or SPSS 18.0 (IBM, Armonk, NY). All tests survive Bonferroni
correction for multiple comparisons.

Selecting Regions for Functional Connectivity Analysis

Throughout the analyses, seed regions for functional connectivity
were selected using different criteria depending on the purpose of the
analysis. In all cases, if a particular data set was used for selecting the
region (e.g., discovery sample), functional connectivity was always
computed with a different data set (e.g., replication sample), thus
providing an unbiased measurement of correlation strength. We have
detailed the method used for region selection in the results as imple-
mented for each particular analysis in RESULTS. The following proce-
dures describe the general strategies adopted.

First, when testing for seed-based confirmation of resolved net-
works, the estimated network boundaries and confidence maps of the
discovery sample were used to derive regional vertices to be tested in
the replication sample (e.g., see Fig. 16). Regions were chosen for
1) maximal spatial coverage of estimated networks, 2) avoiding
network boundaries, and/or 3) their confidence in network assign-
ments. We also defined new regions based on the correlation maps
from the discovery sample. For example, new regions might be
chosen to be at or near the peaks of the correlation maps.

Second, for some analyses we utilized task-based fMRI to select
regions. For example, visuotopic and functional characteristics re-
vealed using fMRI can be used to estimate visual areas in the human
(Hadjikhani et al. 1998; Sereno et al. 1995). The Caret software
database provides estimated locations of multiple visual areas that
were mapped into Caret PALS space using surface-based registration
of an individual case in Hadjikhani et al. (1998), although the foveal
and peripheral extents of these areas are likely to be underestimated
for technical reasons (Van Essen 2004). Landmark-based surface
registration between FreeSurfer and Caret PALS allowed us to utilize
these fMRI-defined visuotopic regions for guiding our selection of
regions in FreeSurfer surface space (e.g., see V3A in Fig. 25). In
addition, we also considered peak activation coordinates reported in
fMRI literature (e.g., see Fig. 27). When the peak coordinates were
reported in MNI space, we projected the coordinates to FreeSurfer
surface space. The mapping between MNI152 volumetric space and
FreeSurfer surface space is detailed in our companion study (Buckner

Fig. 6. Seven and 17 networks can be stably estimated. Instability of the
clustering algorithm is plotted as a function of the number of estimated
networks for the vertex-resampling variant of the stability analysis applied to
1,000 subjects. The clustering algorithm is less stable with increasing number
of estimated networks, which is an expected property, since the number of
estimated networks enlarges the solution space (and thus complexity) of the
clustering problem. The local minima of the graphs (marked with asterisks)
indicate the number of networks that can be stably estimated by the clustering
algorithm. The stability analysis suggests that 7, 10, 12, or 17 networks can be
stably estimated. Resampling the regions of interest yields almost identical
results and is not shown. In this study we focus on the 7- and 17-network
estimates to provide a broad survey of the solution space.
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et al., in press). In cases where the peak activation coordinates were
reported in the atlas space of Talairach and Tournoux (1988), the
coordinates were first mapped to FSL MNI152 space (Lancaster et al.
2007) before being projected to FreeSurfer surface space.

Third, probabilistic histological maps in FreeSurfer surface space
allowed for the selection of regions within histologically defined areas
(e.g., see Fig. 22). Postmortem human brains of 15 subjects with no
history of neurologic or psychiatric diseases were processed and
analyzed (Amunts et al. 1999; Schleicher et al. 1999; Schormann and
Zilles 1998). The histological sections were aligned to postmortem
MR volume of the same brain using nonlinear warping (Schormann
and Zilles 1998) to build an undistorted three-dimensional histological
volume. Cytoarchitectonic areas, including V1 (Amunts et al. 2000)
and hOc5/MT� (Malikovic et al. 2007), were segmented using
observer-independent criteria (Schleicher et al. 1999). The MR vol-
umes were segmented to separate white matter from other tissue
classes, and the segmentation was used to generate topologically
correct and geometrically accurate surface representations of the
cerebral cortex using FreeSurfer (Fischl et al. 2008). The cortical
surfaces of the 15 subjects were registered to FreeSurfer surface
space, and the histological areas were sampled onto the surface space.
Whereas there were 15 subjects, each cytoarchitectonic area was only
analyzed in at most 10 subjects.

Prior work has demonstrated good across-subject alignment of
lower order cortical areas in the surface coordinate system, with
average misregistration errors as small as 2–3 mm for V1 (Fischl et al.
2008; Hinds et al. 2008; Yeo et al. 2010a), which is around the spatial
resolution of the present fMRI data. For higher order regions such as
BA44, BA45, and hOc5/MT�, intersubject agreement is worse, with
average misalignment errors in the order of 6–12 mm (Fischl et al.
2008; Yeo et al. 2010a; 2010b), but still an improvement from
standard volumetric alignment (Amunts et al. 1999). In the case of
histologically defined hOc5, considered to be putative MT� (Malik-
ovic et al. 2007), we were able to verify (not shown) that the
probabilistic map of hOc5 in FreeSurfer surface space (Yeo et al.
2010b) was consistent with that of MT� defined in Caret PALS space
(Van Essen 2004) and peak MT� coordinates reported in Shulman et
al. (1999). Certain anatomical landmarks were also useful in the
selection of regional vertices. For example, the calcarine fissure was
used as a guide to select regions in the lower and upper visual field
representations as well as in the central and peripheral visual field
representations within V1 (e.g., see Fig. 22).

Comparison of Network Boundaries With Cytoarchitectonic Areas

In addition to their utility for selecting regions, the probabilistic
histological maps were useful in relating the estimated network
boundaries to human cytoarchitectonic areas. Because the Statistical
Parametric Mapping (SPM) Anatomy toolbox contained a more com-
plete set of probabilistic histological maps of the same subjects in
MNI Colin27 volumetric space (Eickhoff et al. 2005), we projected
these probability maps to FreeSurfer surface space by establishing
spatial correspondence between Colin27 and FreeSurfer surface space
using the same procedure as that used for mapping between MNI152
volumetric space and FreeSurfer surface space (Buckner et al., in
press). Cytoarchitectonic areas common to both data sets were those
of the primary motor cortex (areas 4a and 4p; Geyer et al. 1996),
premotor cortex (area 6; Geyer 2004), primary somatosensory cortex
(areas 3, 2, and 1; Geyer et al. 1999), early visual cortex (areas 17 and
18; Amunts et al. 2000), hOc5/MT� (Malikovic et al. 2007), and
BA44/45 (Amunts et al. 1999). Consistent with previous discussion
about surface-based vs. volume-based registration, we found Eick-
hoff’s probabilistic maps in FreeSurfer space to be more diffuse than
the maps obtained from the purely surface-based approach, possibly a
result of differences in intersubject alignment. Consequently, for
cytoarchitectonic areas common to both data sets, the surface-based
probabilistic maps were used (Fischl et al. 2008; Yeo et al. 2010b)

(e.g., see Fig. 22). We were also able to verify reasonable overlap (not
shown) between the projected Eickhoff’s maps and the purely surface-
based probabilistic maps for areas common to both data sets, substan-
tiating the validity of the mapping between the Colin27 space and
FreeSurfer surface space.

Effect of Resting Condition on Functional Connectivity

For certain analyses, it was important to check that findings were
not the result of overt eye movements that might shift edges and visual
boundaries in and out of the central field. The core dataset (N �
1,000) employed an EOR condition, because it is comparable to visual
fixation in terms of signal strength (Van Dijk et al. 2010) but can be
acquired in studies that do not employ a setup for visual display. To
examine the effects of the task employed during the resting state, the
effect of condition was analyzed for certain key analyses (e.g., for
analyses that quantified the functional connectivity strengths among
visual regions). As the results show, the type of resting condition
(EOR, ECR, or FIX) is not a significant factor influencing our results
(e.g., see Fig. 17).

Visuotopic fMRI Data

The analyses of the visual cortex involved the visuotopic organi-
zation of the V1-V3 complex. The fMRI data were analyzed in the
native subjects’ volumetric space, and the results were sampled onto
FreeSurfer surface space and averaged across subjects. The details of
the analysis, which provided eccentricity estimates of the visual
representation in the V1-V3 complex, are described elsewhere (Hinds
et al. 2009). A 1-mm smoothing kernel was applied to the averaged
eccentricity estimate in FreeSurfer surface space. Because of the
limited range of visual angle that could be stimulated in the MRI
scanner, and because fixational eye movements that occur during
visual stimulation prevent stable stimulation of the fovea, the eccen-
tricity estimates did not cover the representation of the periphery or of
the center of visual field within the V1-V3 complex (Hinds et al. 2009;
Polimeni et al. 2005) but were sufficient for our analyses.

Distribution of Parcellations and Raw Data

A primary result of this study is the parcellation of cortical networks
and the estimation of boundaries of regions within the networks. The
parcellations of parietal and prefrontal cortices, in particular, represent
demarcations of complex topographical regions that have been perplex-
ing to understand in relation to task-based functional neuroimaging
studies. We have uploaded the parcellations in Caret PALS surface space
into the Surface Management System Database (SumsDB) for open use
(Dickson et al. 2001) (http://sumsdb.wustl.edu:8081/sums/directory.
do?id�8286317). The parcellations in FreeSurfer surface space are also
available (http://www.freesurfer.net/fswiki/CorticalParcellation_Yeo2011).
Movies of the region-based functional connectivity estimates can be down-
loaded from http://www.youtube.com/yeokrienen. The raw fMRI data
from the 1,000 subjects will be made openly available to researchers
using the procedures established by the OASIS data releases (Marcus
et al. 2007, 2010) and the 1,000 Functional Connectomes Project
(Biswal et al. 2010).

RESULTS

Estimates of Cerebral Networks Are Reliable

The cerebral cortex was parcellated into multiple networks
using clustering. The parcellations resulted in networks that
involved primarily adjacent areas (e.g., visual cortex) and
networks that involved areas widely distributed throughout the
cortex (e.g., heteromodal association cortex). Figure 7 shows
the 7-network estimates for the discovery and replication
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samples. A total of 97.4% of the vertices were assigned to the
same networks across both data sets. Varying the particular
choice of binarization threshold (ranging from 5% to 15%) and
smoothing (ranging from no smoothing to 6-mm FWHM)
minimally affected the results (not shown). Figure 8 shows the
confidence (silhouette) value for each vertex with respect to its
assigned network for the 7-network estimate. Regions close to
the boundaries between networks were less confident in their
assignment. Spatial variation within individual components of
the estimated networks was also observed beyond the boundary
regions. Often these low-confidence regions anticipated further
fractionation of the networks into smaller subnetworks that
emerged when larger numbers of networks were allowed (e.g.,
compare the lateral prefrontal extent of the orange network in
Fig. 7 with its confidence map in Fig. 8, and then note
subsequent fractionation of this region in Fig. 9). Figure 9
shows the 17-network estimates for the discovery and replica-
tion data samples, and Fig. 10 shows the confidence map for
the discovery data set. For the 17-network estimate, 97.0% of

the vertices were assigned to the same networks across both
data sets.

Estimates of Cerebral Networks From 1,000 Subjects

To provide the best estimates of the cerebral cortical net-
works, clustering was performed on the full sample of 1,000
subjects. Figures 11 and 13 show the 7- and 17-network
parcellation estimates, respectively. Several results are notable.
A salient feature of the estimated networks is the separation of
the early sensory and late motor cortices (blue and purple) from
association cortex, consistent with the observation that early
sensory and late motor regions exhibit dense local anatomical
connectivity in primates (Felleman and Van Essen 1991; Jones
et al. 1978; Markov et al. 2010) and preferential local func-
tional coupling in humans (Sepulcre et al. 2010). Sensory and
motor cortices, whose functional connectivity networks were
preferentially local, comprised only 35% of the cerebral mantle
and were the exception in terms of network structure.

The majority of the human cerebral cortex is made up of
multiple, distinct networks of association areas. The associa-
tion networks in the 7-network estimate converged and ex-
tended on networks previously described in the resting-state
literature, including those referred to as the dorsal and ventral
attention (green and violet, respectively; Fox et al. 2006), the
frontoparietal control (orange; Dosenbach et al. 2007; Vincent
et al. 2008), and the default (red; Buckner et al. 2008; Greicius
et al. 2003) networks (Fig. 12). We also note that the 7-network
parcellation of the parietal cortex is similar to those proposed
using seed-based approaches (Vincent et al. 2008) and using
the areal boundary detection method (Cohen et al. 2008;
Nelson et al. 2010). The convergence of multiple different
analysis approaches suggests that the parcellation is intrinsic to
the resting-state data rather than an artifact of the algorithm
used.

Generally, the 17-network estimate (Fig. 13) fractionated the
7-network estimate into smaller subnetworks. Some aspects of
the fractionation, such as the emergence of a parahippocam-

Fig. 8. Confidence of the 7-network estimate in the discovery data set.
Confidence (silhouette) value for each vertex with respect to its assigned
network is shown for the discovery data set. Regions close to the boundaries
between networks were less confident of their assignment, although we also
observed structured spatial variation within individual components of the
estimated networks, such as lateral prefrontal cortex, which foreshadows its
division in the 17-network estimate (see Fig. 9).

Fig. 7. Discovery and replication of a 7-network cortical parcellation. The
7-network estimates are highly consistent across the discovery (n � 500) and
replication (n � 500) data sets. A total of 97.4% of the vertices were assigned
to the same network.
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pal-retrosplenial-lateral parietal network, are anticipated by
other studies using hierarchical clustering techniques (e.g.,
Andrews-Hanna et al. 2010). Other aspects of the fraction-
ation were unexpected, such as the emergence of subnet-
works within the visual and motor cortices that did not
respect areal boundaries but rather appear to align with
topographic organization. In the following sections, we
quantify and further explore the patterns of functional con-
nectivity that give rise to these networks.

A Cautionary Note About Potential Artifacts

Before exploring the estimated networks in more detail, it
is important to point out aspects of the data that are difficult
to interpret because of potential fMRI signal blurring across
gyri and signal loss associated with susceptibility (Ojemann
et al. 1997). Figure 14A illustrates one example. Somato-
motor, auditory, and posterior insular cortices are correlated
within a single network (also see Fig. 11). The ventral
portion of somatomotor cortex is clustered with the auditory
cortex in the 17-network parcellation (Fig. 13). Although
nonhuman primate tracing studies suggest auditory and

somatomotor cortices are connected via multiple areas
within the insular cortex (Disbrow et al. 2003; Mesulam and
Mufson 1982), an equally likely explanation for the ob-
served correlation is blurring of the BOLD signal across the
Sylvian fissure (Fig. 14A). We could not find a way, in these
data, to resolve whether the coupling was an artifact of
limited resolution or a true, coupled network.

Figure 14B illustrates a second example of how fMRI signal
blurring might affect the interpretation of the results. In this
case, the primary somatosensory cortex (S1) and primary
motor cortex (M1) are clustered within the same network (Fig.
11). Although there is anatomical evidence of direct connec-
tivity between S1 and M1 in the macaque (Jones et al. 1978;
Pons and Kaas 1986), we are unable to resolve whether the
coupling was an artifact of limited resolution due to the close
proximity of M1 and S1 in volumetric space.

As an example of uncertainty occurring near regions of
MR susceptibility, Fig. 14C illustrates a cream-colored
network of regions in the temporal pole and orbital frontal
cortex (also see Fig. 11). Although there is anatomical
evidence from the primate tracing literature supporting the
existence of this network (Carmichael and Price 1995;
Kondo et al. 2003; Moran et al. 1987), the spatial distortion
and signal loss caused by MR susceptibility creates uncer-
tainty in the location of the network boundaries.

Sensory and Motor Cortices Exhibit Topographically
Specific Functional Connectivity

The sensory and motor cortices were clustered separately
from the association cortex in the 7-network estimate (Fig.
11). This result by itself suggests that sensory and motor
cortices distinguish themselves from distributed networks of
association areas. Within the sensory and motor networks,
there were a number of further observations. Of most
interest, the 17-network parcellation fractionated the sen-
sory and motor cortices into subnetworks (Fig. 13). Specif-
ically, early visual regions formed two distinct subnetworks
that did not respect areal boundaries. Somatomotor cortex
was similarly fractionated along its lateral extent. Our hy-
pothesis is that these fractionations reflect topographic or-

Fig. 9. Discovery and replication of a 17-network cortical parcellation. The
17-network estimates are highly consistent across the discovery (n � 500) and
replication (n � 500) data sets. A total of 97.0% of the vertices were assigned
to the same network.

Fig. 10. Confidence of 17-network estimate in the discovery data set. Confi-
dence (silhouette) value for each vertex with respect to its assigned network is
shown for the discovery data set. Again, regions close to the boundaries
between networks were less confident of their assignment.
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ganization: topographic representation of visual space in the
visual regions and topographic representation of body space
in the somatomotor regions.

Visual topography. The visual network in the 7-network
estimate (Fig. 11) was fractionated into two separate sub-
networks (purple and bright red) in the 17-network estimate
(Fig. 13). The boundary between the two visual subnetworks
cut perpendicularly across the calcarine fissure, suggesting
the division of the early visual areas into central and
peripheral components. To evaluate this possibility, Fig. 15
overlays the eccentricity estimates of the visuotopic data set
over the boundaries of the two separate visual subnetworks.
The early visual areas were divided into two subnetworks
along an isoeccentricity line of �4°. We refer to these two
subnetworks as “central” and “peripheral,” although an
immediate question arises as to whether the division of

lower visual areas into central and peripheral components
extends to higher visual areas. The particular traveling wave
paradigm used in the visuotopic data set was designed to
estimate visual eccentricity within the V1-V3 complex and
is therefore unreliable outside the complex. To gain further
clarification on visual areas outside the V1-V3 complex, we
inspected the boundaries of the 17-network parcellation
overlaid on the map of approximate human visual areas
provided by Van Essen (2004). The boundary between the
central and peripheral representations continues through the
extrastriate visual areas consistent with the possibility that
the division of lower visual areas into central and peripheral
components generally applies to the extrastriate cortex, with
certain caveats that will be taken up in the DISCUSSION.

To assess the validity of the clustering analysis of visual
cortex, six seed regions were selected from the discovery

Fig. 11. A coarse (7-network) parcellation of
the human cerebral cortex based on 1,000
subjects. To provide the best estimates of the
7 cortical networks, clustering was performed
on the fMRI data of the full 1,000 subjects. A
salient feature is the separation of the early
sensory and late motor cortices (blue and
purple) from the association cortex. The asso-
ciation networks converged and extended on
networks previously described in the resting-
state literature, including the dorsal attention,
ventral attention, frontoparietal control, and
default networks.
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sample (Table 1), and their fcMRI maps were computed using
the replication sample. The regions were selected to include V1
and V3 regions that fell within the central and peripheral
representations. Using the calcarine fissure, histological V1
estimates (Amunts et al. 2000; Fischl et al. 2008), and the
network boundaries as landmarks, two regions labeled V1c and
V1p were selected to correspond to central and peripheral V1,
respectively. Using the probabilistic histological maps of the
SPM Anatomy toolbox (Eickhoff et al. 2005), we selected two
regions, labeled V3cv and V3pv, at or near visual area V3v
(Rottschy et al. 2007; Wilms et al. 2010), corresponding to the
central and peripheral representations, respectively. The two
remaining regions were selected from the extrastriate re-
gions of the central and peripheral visual subnetworks. In all
cases, the confidence (silhouette) map of the 17-network
estimate from the discovery sample (Fig. 10) was used as a
guide.

The fcMRI maps of the six seed regions confirm the
network demarcations (Fig. 16). Compared with the other
seed regions of the central visual system, V1c demonstrated
weaker correlation to the extrastriate regions of the central
visual system. This is reflected by the lower confidence of
V1c in its network assignment as shown in Table 1. Con-
sistent with this observation, as the number of networks in
the clustering analysis was increased (not shown), the cen-
tral V1 region separated from the extrastriate component of
the central visual system.

To quantify the dissociation between the central and periph-
eral representations within the visual subnetworks, Fig. 17A
shows polar plots of the correlation of V1p and V1c with five
regions in the replication sample. Since the discovery and
replication samples consist of resting data collected under the
EOR condition, the patterns of functional connectivity were
also quantified for the task effect data set (Fig. 17B). The
results revealed that the central and peripheral V1 seed regions
displayed distinct patterns of functional connectivity that gen-
eralized across multiple data acquisition conditions, including
ECR and FIX.

Although there are differences in visual field properties,
such as magnification factors and receptive field sizes, between
the central and peripheral regions of the V1-V3 complex, these
differences vary smoothly from central to peripheral vision
within an area (Balasubramanian et al. 2002; Dow et al. 1981;
Rovamo and Virsu 1979). To explore this further, we examined
functional connectivity among seed regions spanning the ec-
centricity axes of V1 and V3v (Fig. 18). Results did not suggest
a sharp transition in functional connectivity between V1 and
V3v seed regions moving from central to peripheral represen-
tations. The resulting division of the V1-V3 complex along the
isoeccentricity line of 4° was therefore likely driven by the
functional connectivity of visual regions outside the V1-V3
complex or may be an artifact of the small number of networks
being mandated by the analyses.

Somatomotor topography. The 7-network parcellation esti-
mate clustered the somatomotor cortex into a single network
(the blue network in Fig. 11). Figure 19 shows the boundaries
of the 7-network estimate overlaid on the probabilistic histo-
logical maps of areas 6 (Geyer 2004), 2 (Grefkes et al. 2001),
and 5L (Scheperjans et al. 2008a, 2008b). The histological
estimates of areas 1, 3, and 4 (Geyer et al. 1996, 1999) are
sandwiched between areas 2 and 6 and are not shown. Recent
work (Amunts et al. 2010) has delineated three additional
premotor areas anterior to the ventral half of area 6 shown in
Fig. 19; the ventral half of area 6 in Fig. 19 is therefore an
underestimation. On the basis of these areal references, the
somatomotor network likely includes MI (area 4) and caudal
premotor area 6, SI (areas 3, 1, and 2), and most, if not all,
of early somatosensory area 5L. The somatomotor network
also includes a small portion of the midcingulate sulcus and
possibly area 5M (not shown; Scheperjans et al. 2008a;
2008b).

The 17-network parcellation divided the somatomotor strip
into dorsal and ventral subnetworks across the axis that repre-
sents body space (Fig. 13). To investigate this division, the
parcellations were compared with activation maps of 24 sub-
jects who were instructed to move their tongue, hand, or foot
in response to a visual cue (for a detailed explanation of this
data set, see Buckner et al., in press). As shown in Fig. 20A, the
boundary between the dorsal and ventral somatomotor subnet-
works was roughly positioned between the hand and tongue
representations. To quantify this observation, seed regions
were selected from the left hemisphere hand, foot, and tongue
activation maps and verified to fall within the probabilistic
histological map of area 4 (Fischl et al. 2008; Geyer et al.
1996). Figure 20B shows pairwise correlations computed
among the hand, foot, and tongue regions averaged over 1,000
subjects (hand coordinates: �41, �20, 62; foot coordinates:
�6, �26, 76; tongue coordinates: �55, �4, 26). The hand-
foot correlation was significantly higher than the hand-tongue
correlation (P � 0.001) and foot-tongue correlation (P �
0.001). Thus, like the visual system, functional coupling forms
networks within the somatomotor system that reflect topo-
graphic organization.

There are two further results that must be interpreted cau-
tiously because of volumetric signal blurring. The 7- and
17-network parcellations of somatomotor cortex included both
the precentral and postcentral representations of body space,
thus forming networks that spanned areas (M1 and S1). This
observation is difficult to interpret because precentral and

Fig. 12. Table of colors assigned to networks in the 7-network estimate.
Common names associated with each network in the neuroimaging literature
are included in parentheses. This should not be taken to mean that our
estimated networks correspond exactly to those in the literature or that the
networks code solely for functions associated with their assigned name. As
examples of limitations of heuristic reference labels, the violet ventral attention
network is likely an aggregate of (or closely adjacent to) multiple networks in
the literature variably referred to as the salience (Seeley et al. 2007) and
cingulo-opercular networks (Dosenbach et al. 2007), and the red default
network can be fractionated (e.g., Andrews-Hanna et al. 2010). Many of these
details are reflected in Fig. 13.
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postcentral gyri abut each other in volumetric space (see Fig.
14B). Similarly, the ventral somatomotor network in the 17-
network parcellation included parts of the insula and auditory
cortex, perhaps reflecting a polysynaptic circuit of functional
coupling linked to speech movements and hearing one’s own
voice. We do not interpret this observation further because of
their volumetric proximity (see Fig. 14A).

Asymmetry of Functional Coupling Varies Across
Somatomotor Topography

Analysis of asymmetries in functional coupling is beyond
the scope of this article. However, we observed an interest-
ing variation in the asymmetry of functional coupling that
reinforces the observation of functional differences along
the somatomotor body representation. Specifically, pairwise

correlations between homotopic pairs of hand, foot, and
tongue representations (hand coordinates: �41, �20, 62; foot
coordinates: �6, �26, 76; tongue coordinates: �55, �4, 26)
were measured between the hemispheres (Fig. 21A). The homo-
topic hand correlation was significantly weaker than that of the
homotopic foot (P � 0.001) and tongue (P � 0.001) correlations.
We are unable to rule out the possibility that the higher correlation
between homotopic tongue regions is an artifact of subjects
moving their tongues during scanning.

To explore the somatotopy of interhemispheric fcMRI
beyond the hand, foot, and tongue representations, we esti-
mated the sequence of vertices lying in the shortest path
connecting the left tongue region with the left hand region
and those lying in the shortest path connecting the left hand
region with the left foot region. For each left hemisphere

Fig. 13. A fine-resolution (17-network) par-
cellation of the human cerebral cortex based
on 1,000 subjects. To provide the best esti-
mates of the 17 cortical networks, clustering
was performed on the fMRI data of the full
1,000 subjects. The 17-network estimate
fractionated the 7-network into smaller net-
works. Some aspects of the fractionations
have been previously noted in other studies.
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motor vertex, we found the corresponding right hemisphere
vertex that was maximally correlated with it in the discovery
sample. Figure 21B plots the correlation between the left
hemisphere vertices, arranged ventral to dorsal, and the
corresponding right hemisphere vertices in the replication
data sample. Defining the maximally correlated right hemi-
sphere vertices in the discovery sample avoided bias in the
correlation values and the issue of picking truly homotopic
representations in either hemisphere. Consistent with Fig.
21A, the maximal tongue correlation was higher than that of

the foot, which was in turn higher than that of the hand. The
region in between the hand and foot representations, possi-
bly corresponding to the trunk representation, also displayed
higher maximal interhemispheric correlation than those of
the hand or foot representations.

The observed somatotopy of interhemispheric fcMRI is
consistent with nonhuman primate studies that have shown that
the representations of midline structures in S1 and M1, such as
the face and trunk, have denser callosal connections than those
of distal limbs, such as the hand and foot (Gould et al. 1986;
Jones and Wise 1977; Killackey et al. 1983; Pandya and
Vignolo 1971).

Hierarchical Processing Within a Canonical Sensory-Motor
Pathway

Parcellation of the cerebral cortex into distinct networks will
not capture information about interactions between regions that
fall across separate networks. This is particularly problematic
because the canonical system-level description of cortical pro-
cessing involves interactions across hierarchical pathways of
sensory and motor areas. The above analyses leave open the
question of how the distinct networks interact as is expected for
sensory-motor pathways.

To explore this question, we selected the canonical sensory-
motor pathway that extends from primary visual cortex to the
precentral motor regions (including the putative homolog of
FEF) via the motion-sensitive MT� complex and posterior
parietal cortex at or near putative human LIP. In the macaque
literature, this pathway has been extensively studied in relation
to sensory-guided decisions resulting in eye movements and
associated processes linked to spatial attention (e.g., Andersen

Fig. 15. Eccentricity estimates quantify the division of the early visual cortex
into central and peripheral systems. Eccentricity estimates in the early visual
areas of 4 subjects were averaged and overlaid on the boundaries (in black) of
the 17-network estimate. The boundary between areas 18 and 19 estimated
from the histological data set is overlaid in green. The 17-network estimate
divides the early visual areas along an isoeccentricity line of �4°. Note that the
eccentricity estimates are not reliable outside the V1-V3 complex.

Fig. 14. Uncertain observations due to limited data resolution and MR
susceptibility. When the clustering results are interpreted, potential artifacts
and uncertainties must be considered. Because of the close proximity of the
somatomotor and auditory cortices (A) and the close proximity of the pre- and
postcentral gyri (B), we are unable to resolve whether the clustering of the
somatomotor and auditory cortices (A) and the clustering of the primary
somatosensory and primary motor cortices (B) are due to the result of fMRI
blurring across sulci or a true, coupled network of distributed areas as predicted
by macaque tracing studies. C: the orbital frontal-temporopolar network
(cream color) consists of temporopolar and orbital frontal regions that are
affected by MR susceptibility. Since MR susceptibility spatially distorts the
MR signal and reduces SNR, there is uncertainty in the exact boundary of the
orbital frontal-temporopolar network, and the true extent of the network is
probably underestimated.
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and Buneo 2002; Colby and Goldberg 1999; Gold and Shadlen
2007; Shadlen and Newsome 2001). In the human literature,
this pathway has been studied both in relation to spatially
directed movements and also in relation to spatial attention,
with components of the pathway sometimes referred to as the
dorsal attention system or network (Corbetta and Shulman
2002). Most critically, the anatomical relations between the
areas within the pathway have been extensively explored,
beginning with the seminal work of Maunsell and Van Essen
(1983).

Early visual cortex. Analysis focused initially on the bottom
of the sensory-motor pathway by investigating functional con-
nectivity between V1 and putative human MT�.2 For this
analysis, two V1 regions were selected in dorsal (V1cd) and
ventral (V1cv) central V1 corresponding to the lower and upper

visual field representations. Two additional V1 regions were
selected in dorsal (V1pd) and ventral (V1pv) peripheral V1
corresponding to the lower and upper visual field representa-
tions. Two MT� seed regions (MT�d and MT�v) were
selected following the dorsoventral extent of the surface-based
probabilistic histological map of MT� (Malikovic et al. 2007;
Yeo et al. 2010b). The MT�d and MT�v seed regions likely
correspond to peripheral and central visual field representa-
tions, respectively (Huk et al. 2002; Maunsell and Van Essen
1987), and were analyzed to illustrate differential connectivity
within MT�. Because of the overrepresentation of the lower
visual field within macaque MT (Maunsell and Van Essen
1987), the distinct MT� seed regions might also represent the
lower visual field, although human fMRI studies have so far
failed to yield strong evidence of this representational bias
within MT� (Amano et al. 2009; Kolster et al. 2010; Tootell
et al. 1995). In the following analyses, MT� was either
analyzed as two regions using the extreme seed regions (MT�d
and MT�v) or as a single region using the center seed region
(MT�) for analyses that did not require the complexities of
topographic distinctions. A single anterior MT� (aMT�)

2 In humans, the MT� complex is used to denote the putative human
homolog of macaque area MT and neighboring visual areas that are sensitive
to motion stimuli (DeYoe et al. 1996). Here we are able to constrain the
location of MT� using surface-based histological maps of hOc5, which is
thought to be the cytoarchitectonic correlate of the human MT� complex
(Malikovic et al. 2007; Yeo et al. 2010b).

Table 1. Locations of visual cortex seed regions

Seed Region Coordinates Confidence Literature

V3pv �12, �67, �3 0.74 Rottschy et al. 2007; Wilms et al. 2010
ExP �3, �74, 23 0.81
V1p �16, �74, 7 0.78 Amunts et al. 2000; Fischl et al. 2008
V3cv �23, �91, �15 0.67 Rottschy et al. 2007; Wilms et al. 2010
ExC �32, �89, �1 0.75
V1c �13, �100, �8 0.48 Amunts et al. 2000; Fischl et al. 2008

V1c and V1p seed regions are selected from the central and peripheral regions of V1, respectively. V3cv and V3pv seed regions are selected from the central
and peripheral regions at or near V3v, respectively. ExC and ExP are selected from the extrastriate visual cortex in the estimated locations of the central and
peripheral fields, respectively. The confidence of the seeds in their network assignment was computed from the replication data set. Coordinates reflect the
approximate center location based on the atlas space of the Montreal Neurological Institute (MNI).

Fig. 16. Evidence that the fractionation of the
visual system reflects functional connectivity
MRI (fcMRI) topography within the visual
cortex. Six left hemisphere seed regions
were picked from the discovery dataset: V1c

and V1p correspond to central and peripheral
visual field representation within V1, respec-
tively; V3cv and V3pv correspond to central
and peripheral V3v, respectively; ExC and
ExP correspond to 2 seed regions within the
extrastriate visual cortex in the estimated
locations of the central and peripheral visual
fields (purple and bright red at center). The 6
seed regions are illustrated at center, and
their coordinate locations are reported in Ta-
ble 1. Their left hemisphere fcMRI maps
were computed using the replication data set
and arranged around the center images. Note
that the central visual seed regions are selec-
tively correlated with the central visual rep-
resentation, whereas the peripheral visual
seed regions are selectively correlated with
the peripheral visual representation.
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region was chosen anterior to and outside the histological
MT�.3 The regions are shown in Figs. 22A and 24; their
coordinates are reported in Table 2.

Figure 22B quantifies the differential functional coupling of
the four V1 regions with MT� and aMT� within the replica-
tion sample. V1 showed strong functional coupling to MT�
and significantly weaker coupling to aMT� (P � 0.001 for
both MT�v and MT�d). The dorsal and ventral MT� regions
also demonstrated differential functional coupling with the four
V1 regions, confirmed by a 2 � 2 � 2 ANOVA including
eccentricity (central or peripheral), polar angle (upper or lower
visual field), and MT� region (dorsal or ventral). Both MT�
regions were more strongly coupled with the lower visual field
V1 seed regions than the upper visual field V1 seed regions
(P � 0.001). Furthermore, dorsal MT� was more strongly
coupled with peripheral V1 than central V1 (P � 0.001),
whereas ventral MT� was more strongly coupled with central
V1 than peripheral V1 (P � 0.05). These results suggest the
topographic pathways between V1 and the MT� complex are
largely consistent with the visual field representations of the
two areas.

Since V1 is a relatively large structure compared with MT�,
to ensure the results were robust to the particular choice of the
V1 seed regions, fcMRI maps were produced of the aMT�,
MT�d, and MT�v regions computed using the replication data
set (Fig. 23). By all accounts, V1 is functionally coupled to
MT�, whereas aMT� shows minimal coupling, leading to
their separation into distinct networks in the cortical
parcellation.

Visual association and parietal association cortices. Mov-
ing up the sensory-motor pathway, the functional connectivity
of MT� and aMT� with parietal and frontal cortices was next
examined. Figure 24 shows the fcMRI maps of MT� and
aMT� seed regions computed using the replication sample
with views focusing on the parietal and lateral frontal cortices.

3 Multiple seed regions are used throughout this article. The abbreviation of
the names of these seed regions obeyed the following convention: the suffix
following a region indicates relative spatial location within the region, whereas

the prefix preceding a region indicates relative spatial location outside the
region. Therefore, MT�d is a seed region within the dorsal aspect of the MT�
complex, whereas aMT� is a seed region anterior to and outside the MT�
complex.

Fig. 18. V1 and V3 functional correlations display a smooth transition from the
central to peripheral representations. Correlation of 2 series of seed regions
spanning the eccentricity axes of V1 and V3v is shown for the full sample of
1,000 subjects. V1 seed regions of low eccentricity are strongly correlated with
V3 seed regions of low eccentricity. V1 seed regions of high eccentricity are
strongly correlated with V3 seed regions of high eccentricity. There is a
gradual transition in functional connectivity strength between the central to
peripheral representations.

Fig. 17. Quantification of fcMRI topography within the
visual cortex and independence of the topography from task
condition. A: quantification measures of functional connec-
tivity strength are plotted in polar form for V1c (central V1)
and V1p (peripheral V1) seed regions for the replication
data set. Note that “V1” refers to V1c for the V1p polar plot
(blue) and V1p for the V1c polar plot (red). Coordinate
locations for all 6 seed regions (V1c, V1p, V3cv, V3pv, ExC,
and ExP) are reported in Table 1. B: polar plots from A
replicated with the task effects data set (EOR, eyes open
rest; ECR, eyes closed rest; FIX, fixation) to ensure that the
results obtained using the EOR replication data set were not
due to overt eye movements that might shift edges and
visual boundaries in and out of the central field. Left: V1p

polar plot. Right: V1c polar plot. The polar plots quantify
the differential functional coupling of central and periph-
eral V1 with higher visual areas. The polar scales range
from r � �0.1 (center) to r � 0.7 (outer boundary) in
0.2-step increments.
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In the parietal lobe, both MT� and aMT� demonstrated
correlation with the superior parietal lobule (SPL) and intra-
parietal sulcus (IPS) but little or no correlation with the inferior
parietal lobule (IPL). In the frontal cortex, correlations were
mostly limited to the precentral sulcus and gyrus. Compared
with the MT� seed region, the aMT� seed region demon-
strated stronger correlation with the parietal and frontal corti-
ces. The MT� and aMT� seed regions were also maximally
correlated with different parts of the parietal and frontal cor-
tices, suggesting differential influence on nearby regions of
sensory-association cortex.

To quantify the pattern of differential functional coupling,
we computed the correlation of the MT� and aMT� seed
regions with four visual, four parietal, and two frontal cortical
regions (Fig. 25A). Two of the visual cortex regions, V1cd and
V1pd, were previously used in the V1-MT� connectivity
analysis. V3A and V4 were selected on the basis of their high
correlation with MT� in the discovery sample and named
using the approximate map of human visual areas (Van Essen
2004) as reference. The four parietal regions were chosen at or
near the IPS. Three of the parietal regions (IPS2, SPL7A, and
SPL7P) were selected on the basis of a meta-analysis of fMRI
literature of tasks that reportedly activate the human homologs
of macaque areas AIP (anterior intraparietal), LIP (lateral
intraparietal), and PIP (posterior intraparietal), respectively.
The final parietal region, IPS3m, was selected using the dis-
covery sample to be physically between IPS2 and SPL7A. The
parietal regions were labeled on the basis of their proximity to
the probabilistic histological maps. In particular, IPS2 is at or
near area hIP2 at the anterior most part of IPS (Choi et al.
2006), whereas SPL7A and SPL7P are at or near areas 7A and

7P of the SPL (Scheperjans et al. 2008a; 2008b). Finally,
IPS3m is on the medial wall of IPS at or near area hIP3
(Scheperjans et al. 2008a; 2008b). The dorsal frontal region,
putatively FEF, was selected on the basis of the meta-analysis
of fMRI literature of saccade tasks. The ventral frontal region
PrCv (precentral ventral) was selected on the basis of its high
correlation with aMT� in the discovery sample. The locations
of the visual, parietal, and frontal regions are reported in Table
2. Table 3 summarizes the set of fMRI studies used to derive
the coordinates of IPS2, SPL7A, SPL7P, and FEF.

Figure 25B shows the polar plots of the regional correlations
using the replication sample. To ensure that the results were
not the result of overt eye movements, the polar plots were also
replicated using the task effect data set in Fig. 25, C and D. In
all cases, MT� had significantly stronger correlation with
early visual cortex compared with aMT�. In contrast, aMT�
had significantly stronger correlation with the parietal and
frontal regions compared with MT�. MT� and aMT� are
strongly coupled to one another (r � 0.30 in the replication
sample). Thus consideration of functional coupling between
these regions in detail suggests that early visual areas are
coupled to regions at or near MT�, which are in turn directly
(or indirectly through intermediate regions, such as aMT�)
coupled to parietal and frontal regions associated with sensory-
motor integration. The differential coupling of MT� and
aMT� resulted in their inclusion into distinct cortical
networks.

Frontoparietal interactions. We next considered the differ-
ential functional coupling of FEF and PrCv with the parietal
cortex. Figure 26 shows the fcMRI maps of FEF and PrCv
computed using the replication sample. Although both FEF and

Fig. 19. Seven-network boundaries on probabilistic maps of areas 6, 2, and 5L. Boundaries of 7-network estimate based on the full sample of 1,000 subjects are
overlaid on the surface-based probabilistic histological maps of areas 6, 2, and 5L. The somatomotor network includes most, if not all, of areas 2 and 5L, but
only the caudal half of area 6.
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PrCv demonstrated strong correlation with the SPL and IPS,
differences in correlation patterns also emerged. Specifically,
PrCv was strongly correlated with more ventral portions of
rostral SPL and IPS, whereas FEF was strongly correlated with
caudal SPL and IPS. To quantify this phenomenon, we com-
puted the correlation of FEF and PrCv with five parietal regions
at or near SPL and IPS. Four of the parietal regions (IPS2,
IPS3m, SPL7A, and SPL7P) were the same as those used in the
previous analysis. With the use of the discovery sample, a fifth
parietal region was selected on the lateral wall of rostral IPS,
within what is often termed the frontoparietal control network
(orange; Fig. 11). Since the region was located at or near the
histological map of hIP1 (Choi et al. 2006) projected to
FreeSurfer space, we labeled the seed IPS1. The regions are
displayed in Fig. 27A, and their coordinates are reported in
Table 2.

Figure 27B shows the correlation of FEF and PrCv with the
five parietal regions computed in the replication sample, ar-
ranged in rostral (lateral) to caudal (medial) order. The rostro-

lateral IPS regions (IPS1, IPS2, and IPS3m) were more
strongly correlated with PrCv than FEF, whereas the medio-
caudal SPL regions (SPL7A and SPL7P) were more strongly
correlated with FEF than PrCv. A 2 � 5 ANOVA including
frontal regions (FEF and PrCv) and parietal regions (IPS1,
IPS2, IPS3m, SPL7A, and SPL7P) found a significant interac-
tion (P � 0.001). In particular, FEF was more strongly corre-
lated with the three IPS seeds (all P � 0.001), whereas PrCv
was more strongly correlated with SPL7A and SPL7P (both
P � 0.001). These results reveal differential coupling between
distinct parietal and frontal regions, likely reflecting multiple
pathways involved in sensory-motor integration (Kurata 1991;
Rizzolatti et al. 1998; Tanné-Gariépy et al. 2002).

Hierarchical analysis. Assuming a visual hierarchy similar
to that proposed by Maunsell and Van Essen (1983) exists in
human cerebral cortex, V1 is expected to be near the bottom of
the hierarchy and FEF to be near the top (also see Felleman and
Van Essen 1991; Ungerleider and Desimone 1986). Although

Fig. 21. Evidence that the interhemispheric fcMRI of homotopic regions
within the primary motor cortex is topographically organized. A: correla-
tion strength of left hemisphere tongue, hand, and foot seed regions with
corresponding contralateral seed regions averaged over all 1,000 subjects.
Right hemisphere vertices were obtained by reflection across the midline.
Hand coordinates � �41, �20, 62; foot coordinates � �6, �26, 76; and
tongue coordinates � �55, �4, 26. The tongue representation has the
strongest interhemispheric correlation, followed by the foot and then the hand.
B: plot of interhemispheric correlation along the ventral (tongue) to dorsal
(foot) extent of motor cortex. Maximal interhemispheric correlation is highest
near the tongue representation and also peaks between the hand and foot
representations, possibly corresponding to the trunk representation.

Fig. 20. Evidence that the fractionation of the somatomotor cortex reflects
fcMRI topography within the somatosensory and motor cortex. A: average
fMRI activation maps of 24 subjects instructed to move their tongue (blue),
right hand (red), or right foot (green) across separate conditions. Black lines
correspond to boundaries of the 17-network estimate. The dorsoventral split of
the somatomotor network occurs spatially between the tongue and hand
activations. B: quantification of correlation strength between the left hemi-
sphere tongue, hand, and foot seed regions selected from the activation maps.
Hand coordinates � �41, �20, 62; foot coordinates � �6, �26, 76; and
tongue coordinates: �55, �4, 26. Hand-foot correlation is significantly higher
than hand-tongue correlation, which is in turn significantly higher than foot-
tongue correlation. Tng, tongue.
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there are uncertainties as to the exact homologies of our MT�
and aMT� seed regions, they are likely to be in the middle of
the hierarchy with aMT� higher than MT�. In our analysis,
we found that V1 and MT�, which are close together in the
hierarchy, have stronger correlation than V1 and aMT�, which
are farther apart in the hierarchy (Figs. 22 and 25). We also
found that aMT� and FEF, which are closer in the hierarchy,
have stronger correlation than MT� and FEF, which are
farther apart in the hierarchy (Figs. 24 and 25).

These results suggest that correlation between regions in the
visual hierarchy may provide some insight into the organiza-
tion of the pathways. To explore this hypothesis, we examined
the arrangement of six seed regions (V1pd, V3A, MT�,
aMT�, SPL7A, and FEF) discussed earlier based on the
assumption that stronger correlations are consistent with closer
positioning in the processing hierarchy. By examining alterna-
tive arrangements of regions, the analysis was able to investi-
gate which particular arrangement was most consistent with the
functional connectivity pattern. Figure 28 illustrates this ap-
proach. Figure 29 shows the two best hierarchical arrange-
ments of the six regions when seeking a five-level hierarchy
using the replication sample. In both cases, the relative order-
ing of the regions within the functional hierarchy agrees well
with the previously proposed and refined models of macaque

visual hierarchy (Felleman and Van Essen 1991; Maunsell and
Van Essen 1983; Ungerleider and Desimone 1986). By con-
trast, alternative arrangements of the visual areas lead to large
proportions of violated constraints (Fig. 29, D and E).

Control analyses using the discovery set show that the fcMRI
strengths of all pairs of the six seed regions are inversely corre-
lated (r � �0.78, P � 0.001) with respect to the hierarchical
distance between the regions in the hierarchy as defined by
Felleman and Van Essen (1991). By contrast, the fcMRI strengths
of all pairs of the six seed regions are not correlated (P � 0.23)
with respect to the physical distance between the seed regions.
These results suggest that spatial proximity does not explain these
correlations; rather, the pattern of correlations reflects relative
positions of regions within the hierarchy.

These findings converge on two main results. First, there are
functional interactions between networks, but the interactions
are selective. V1 shows minimal coupling with association
regions within parietal cortex, but it does couple with MT�.

Table 2. Locations of seed regions utilized in the sensory-motor
pathway analysis

Seed Region Coordinates

MT�d �44, �72, 8
MT� �45, �72, 3
MT�v �45, �79, �1
aMT� �51, �64, �2
V1pd �18, �70, 8
V1pv �8, �63, 6
V1cd �8, �95, 3
V1cv �8, �92, �5
V3A �17, �92, 20
V4 �22, �65, �9
FEF �26, �6, 48
PrCv �50, 6, 30
IPS2 �40, �37, 42
IPS3m �31, �48, 46
SPL7A �28, �61, 60
SPL7P �14, �68,64
IPS1 �46, �49, 51

Four V1 seed regions were selected using the calcarine fissure, histological
V1 estimates (Amunts et al. 2000; Fischl et al. 2008) and the 17-network
boundary estimate in the discovery data set. V1pd and V1pv were selected from
the dorsal and ventral parts of peripheral V1, likely representing the ventral and
dorsal peripheral visual fields, respectively. V1cd and V1cv were selected from
the dorsal and ventral parts of central V1, likely representing the ventral and
dorsal central visual fields, respectively. MT�d, MT�, and MT�v seed
regions were selected from the dorsal, central, and ventral parts of the
histological map of the MT� complex so that MT�d and MT�v likely
represent peripheral and central visual fields, respectively. Based on the
overrepresentation of the lower visual field within macaque MT (Maunsell and
Van Essen 1987), it is possible that the 3 MT� seed regions might also
represent the lower visual field. aMT� was selected to be anterior and outside
the MT� histological map. V3A and V4 were selected based on their high
correlation with MT� in the discovery sample and were named using the
approximate map of human visual areas (Van Essen 2004) as reference. Frontal
eye field (FEF) and precentral ventral frontal cortex (PrCv) were selected from
the caudal frontal cortex, whereas IPS2, IPS3m, SPL7A, SPL7P, and IPS1 were
at or near the intraparietal sulcus (IPS). FEF, IPS2, SPL7A, and SPL7P were
derived from the meta-analysis of functional magnetic resonance imaging
(fMRI) studies (see Table 4). The PrCv region was selected based on its
correlation with aMT�. IPS3m was chosen spatially between IPS2 and SPL7A.
IPS1 was chosen on the lateral wall of rostral IPS. IPS2, IPS3m, SPL7A,
SPL7P, and IPS1 were named using the probabilistic histological maps of the
parietal cortex as reference (Choi et al. 2006; Scheperjans et al. 2008a; 2008b).
Coordinates reflect the approximate center location based on the MNI atlas
space.

Fig. 22. Functional connectivity between MT� and V1 is topographically
organized. A: 2 MT� seed regions, MT�d and MT�v, were selected in the
dorsal and ventral portions of the histological MT� estimate, respectively. The
anterior MT� (aMT�) seed region was selected anterior to histological MT�.
Four V1 seed regions were selected using the histological V1 estimate: V1cd

and V1cv were selected in dorsal and ventral central V1; V1pd and V1pd were
selected in dorsal and ventral peripheral V1. Coordinate locations of seed
regions are reported in Table 2. B: correlation strength of aMT� and MT�
seed regions with V1 in the replication dataset. There are 4 observations to be
noted: 1) V1-aMT� correlation is weaker than V1-MT� correlation, 2) MT�
correlation with the lower visual field is stronger than the upper visual field,
3) MT�d correlation with peripheral V1 is stronger than central V1, and
4) MT�v correlation with central V1 is stronger than peripheral V1.
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The between-network interactions also do not typically violate
the network organizations revealed earlier by the clustering
approaches: regions show stronger functional coupling to other
regions within their network as contrast to regions outside their
network. Second, when examined together, the pattern of
correlations between regions in different networks is consistent
with a hierarchical organization by which sensory information
could influence regions associated with motor control (Fig. 29).

Parietal and Prefrontal Association Cortices Possess
Multiple Regions With Distinct Connectivity Profiles

The above analyses describe separate sensory and motor
networks and address the question of how sensory and
motor networks might interact through intermediate areas

such as aMT�. However, these networks make up only a
minority of the human cerebral cortex. Networks of widely
distributed regions comprise the majority of the human
cerebral cortex as illustrated by the violet, orange, and red
networks in the 7-network solution (Fig. 11). The network
complexity expands when the 17-network parcellation is
considered (Fig. 13). These association networks are the
remaining focus of our results. First, we examined the
topography of parietal and frontal association cortices to
quantitatively illustrate that multiple neighboring regions
possess markedly different functional connectivity finger-
prints. Next, we explored the relations between distributed
regions to demonstrate that the association cortex comprises
multiple, interdigitated association networks.

Fig. 23. Functional connectivity maps of MT�
reveal topographic organization. Functional
connectivity maps of aMT�, MT�v, and
MT�d were computed using the replication
data set and are shown with views focusing on
V1. V1 shows little or no correlation to aMT�
but strong correlations with both MT� seeds.
In both MT� fcMRI maps, there is stronger
correlation with dorsal V1 (lower visual field)
than ventral V1 (upper visual field). There is
also increasing correlation with central V1 as
we proceed from MT�d to MT�v. The yellow
line denotes the areal boundary of V1.

Fig. 24. aMT� and MT� demonstrate dif-
ferential functional connectivity with parietal
and frontal cortices. Functional connectivity
maps of aMT� and MT� seed regions were
computed using the replication data set. Co-
ordinate locations of the regions are reported
in Table 2. MT� and aMT� are more
strongly correlated with superior parietal
lobe (SPL) and intraparietal sulcus (IPS) than
with inferior parietal lobe (IPL). Correlation
with frontal cortex is mostly limited to pre-
central sulcus and gyrus. aMT� demon-
strates stronger overall correlation with pari-
etal and frontal cortices, compared with
MT�. MT� and aMT� are maximally cor-
related with different parts of parietal and
frontal cortices.
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Parietal association cortex. The basic approach employed to
characterize the connectivity properties of parietal cortex was
to extend the strategy applied in Fig. 25 to construct polar plots
that quantify coupling with multiple, distributed cortical re-
gions. Following the work of Passingham et al. (2002), we refer to
these plots as “functional connectivity fingerprints” with the idea
that the graphical representation will facilitate the visualization of
similarities in connectivity properties between regions as well as
any differences that make them unique. The plots are quantitative
in that eccentricity displays the strength of functional coupling
between each seed region and a single target region.

For this analysis, multiple regions within parietal cortex
were selected to cover the IPL and immediately adjacent

portions of the SPL. Regions were further selected to survey
distinct networks as revealed by the clustering maps. Some of
the regions were used previously in the sensory-motor pathway
analysis (IPS2 and SPL7A). Other regions (PF, PGa, IPS3l,
PGpd, and PGpv) were selected using the discovery data set and
then labeled according to the probabilistic histological maps. In
particular, the PF and PGa seed regions were at or near human
inferior parietal areas PF and PGa, respectively (Caspers et al.
2006, 2008), whereas the IPS3l seed region was on the lateral
lip of the IPS at or near human hIPS3 (Scheperjans et al.
2008a; 2008b). PGpd and PGpv corresponded to the dorsal and
ventral aspects of area PGp in the IPL, respectively (Caspers et
al. 2006, 2008). One additional seed region at or near the

Fig. 25. aMT� and MT� functional connec-
tivity patterns generalize across task condi-
tions. A: 4 visual, 4 parietal, and 2 frontal
seed regions were used to quantify the func-
tional coupling of aMT� and MT� to dis-
tributed cortical regions. Coordinate loca-
tions of the seed regions are reported in Table
2 and were chosen using either the discovery
data set or meta-analysis of fMRI studies
(Table 3). B: polar plots of MT� (blue) and
aMT� (red) connectivity with the visual,
parietal, and frontal seed regions were com-
puted using the replication data set. MT� is
more strongly correlated with visual cortex
compared with parietal and frontal cortices.
The converse is true for aMT�. C and
D: polar plots of MT� (blue) and aMT� (red)
connectivity replicated in the task effects
data set demonstrate that the functional cou-
pling differences generalize across multiple
data acquisition conditions. The polar scales
range from r � �0.1 (center) to r � 0.6
(outer boundary) in 0.35-step increments.

Table 3. Summary of fMRI meta-analysis to obtain coordinates for IPS2, SPL7A, SPL7P, and FEF

Seed Region Coordinates Putative Macaque Homolog Literature

IPS2 �40, �37, 42 AIP (anterior intraparietal) Binkofski et al. 1998, 1999; Culham et al. 2003; Grefkes et al. 2002; Jäncke
et al. 2001; Shikata et al. 2001, 2003

SPL7A �28, �61, 60 LIP (lateral intraparietal) Hagler et al. 2007; Heide et al. 2001; Koyama et al. 2004; Luna et al. 1998;
Medendorp et al. 2003; Sereno et al. 2001 (as reported in Table 1 of
Hagler et al. 2007); Shulman et al. 2003

SPL7P �14, �68, 64 PIP (posterior intraparietal) Faillenot et al. 2001; Shikata et al. 2001; Shikata et al. 2003; Taira et al.
2001

FEF �26, �6, 48 FEF (frontal eye field) Connolly et al. 2000, 2002; Corbetta et al. 1998; Heide et al. 2001; Koyama
et al. 2004; Luna et al. 1998; Perry and Zeki 2000

For studies that only report right hemisphere coordinates, left hemisphere coordinates were obtained by reflection across the midline. Coordinates reflect the
approximate center location based on the MNI atlas. For IPS2, tasks generally involved perception of 3-dimensional objects. Studies reporting responses at or
near SPL7A used saccadic eye movement tasks. Studies reporting responses at or near SPL7P involved tasks requiring surface/orientation discrimination. FEF
coordinates come from studies of saccadic eye movements.
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temporoparietal junction (TPJ) was selected based on the peak
coordinates reported in a human fMRI study of mental state
inference (Saxe and Powell 2006), which accords well with the
predicted mean peak in a recent meta-analysis on the same
topic (Van Overwalle and Baetens 2009).

Twenty-two cortical target regions were distributed over the
lateral and medial aspects of the cerebral cortex such that
multiple regions covered each association network. Four of the
cortical regions (aMT�, MT�, FEF, and PrCv) were used
previously in the sensory-motor pathway analysis. Many labels
for the frontal seed regions reflect gross anatomical landmarks,
because atlas-based human histological references were not
available; subscripts denote relative positions. It is worth
noting that target region 6vr� was selected to be anterior to the
map of premotor area 6 (Geyer 2004) and labeled to reflect a
new delineation of the ventral precentral sulcus (Amunts et al.
2010). Target region PFCv fell within the histological map of
BA45 (Amunts et al. 1999). The coordinates of the parietal
seed regions and cortical target regions are reported in Table 4.

The results are illustrated in Fig. 30. Parietal association
cortex comprises multiple regions that can show similarities
but often display markedly different functional connectivity
fingerprints. Visual inspection of the plots allows appreciation
of the resemblance of correlation patterns for parietal seed
regions that cause them to fall within common networks. For
example, the PGpd, PGpv, and TPJ seed regions all fall within
the default network as defined in the extant neuroimaging
literature. Their connectivity fingerprints are largely defined by
their correlations with other association and limbic regions,
and near complete absence of correlations with visual regions
including MT� and aMT�. This general fingerprint pattern
can be directly contrasted with parietal regions such as those

represented by IPS2 and SPL7A that are associated with
distributed cortical regions linked to sensory and motor func-
tion (e.g., strong correlations with MT� and aMT�). These
distinct parietal regions (IPS2 and SPL7A) are likely at or near
the putative human homologue to macaque AIP and LIP and
fall within the functional network that has been discussed as
the dorsal attention network in the human literature and de-
scribed in detail in Figs. 22–29.

There are also subtle differences across regions that fall
within the same broad networks. For example, whereas
parietal seed regions TPJ, PGpv and PGpd are strongly
correlated with posterior cingulate cortex (PCC) and the
precuneus (pCun), PGpv has comparatively stronger corre-
lation to retrosplenial cortex (RSP) and parahippocampal
complex (PHC). In contrast, TPJ has the strongest correla-
tion with posterior superior temporal sulcus (STSp) and
lower correlation with RSP and PHC. PGpd has the strongest
correlation with medial prefrontal cortex (PFCm). These
differential correlations account for the fractionation of the
posterior IPL into three components in the 17-network
estimate (Fig. 13) and may be important to the functional
properties of the region.

Frontal association cortex. Analysis of frontal association
cortex applied the same approach as for parietal association
cortex. The eight frontal seed regions selected for analysis
were among the cortical targets in the parietal plots discussed

Fig. 27. Evidence for segregated pathways linking caudal frontal cortex with
SPL and IPS. A: 5 parietal seed regions were selected along the rostrocaudal
extent of SPL and IPS. Two frontal seed regions, FEF and PrCv, were selected
in dorsal and ventral precentral sulcus. All seed regions were selected using the
discovery data set or meta-analysis of fMRI studies (Table 3). The coordinate
locations are reported in Table 2. B: functional connectivity of FEF and PrCv

with the 5 parietal seed regions, arranged in rostral (lateral) to caudal (medial)
order, from the replication data set. Rostrolateral IPS seed regions (IPS1, IPS2,
and IPS3m) are more strongly correlated with PrCv than FEF, whereas the
mediocaudal SPL seed regions (SPL7A and SPL7P) are more strongly corre-
lated with FEF than PrCv.

Fig. 26. Differential connectivity of dorsal and ventral caudal frontal cortex
with SPL and IPS. Functional connectivity maps of frontal eye field (FEF) and
precentral ventral frontal region (PrCv) were computed using the replication
data set and are shown with view focusing on parietal cortex. Both FEF and
PrCv demonstrate strong correlation with SPL and IPS. PrCv is more strongly
correlated with ventral portions of rostral SPL and IPS, whereas FEF is more
strongly correlated with caudal SPL and IPS.
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previously. The 22 cortical target regions selected for analysis
were distributed throughout the cortex and selected so that
multiple target regions covered each association network.
Eleven regions were carried forward from the previous analysis
of the parietal cortex (e.g., IPS2, SPL7A, FEF, PrCv, aMT�,
and MT�), and these were arranged in the same spatial
locations in the polar plots (anterior cingulate cortex clockwise
to pCun). The remaining 11 cortical target regions were unique
to analysis of frontal cortex but were arranged in the plots so
that cortical target regions at the same location in the polar
plots belonged to the same network in the 7-network estimate.
The arrangement of the cortical target regions therefore facil-
itates the comparison of polar plots across the parietal and
frontal figures. The coordinates of the frontal seed regions and
cortical target regions are reported in Table 4.

Figure 31 shows the polar plots of correlations for the 8
frontal seed regions with the 22 target regions in parietal,
temporal, frontal, and cingulate cortices. Many of the same
properties observed for parietal association cortex are again
apparent. Figure 31 demonstrates that frontal seed regions in
the same network generally share similar functional connec-
tivity fingerprints that are distinct from those of neighboring
seed regions belonging to a different network. A simple
posterior-to-anterior hierarchy is not present as might be
expected from some models of frontal hierarchy based on
anatomical connectivity (e.g., Petrides 2005). Rather, re-
gions with similar functional connectivity fingerprints ap-
pear at posterior and anterior locations as evidenced by
PFCda, which is considerably rostral to most of its partner
regions, and PFCdp which is considerably caudal to its
partner regions.

The arrangement of the cortical target regions also allows a
key feature of connectivity to be appreciated when frontal
region (Fig. 31) is directly compared with parietal region (Fig.
30): parietal and frontal seed regions from the same network,
for instance, PGpd and PFCm, have similar functional connec-
tivity fingerprints. These similarities suggest that association
cortex is made of parallel interdigitated networks of regions
consistent with suggestions based on double-labeling analyses
of monkey association cortex (Goldman-Rakic 1988; Selemon
and Goldman-Rakic 1988). In our final analysis, we explored
this possibility directly by comparing functional connectivity
maps for multiple seed regions distributed across each associ-
ation network.

Association Cortex Comprises Multiple, Interdigitated
Large-Scale Networks

The parcellations derived from clustering suggest that
there are multiple, large-scale networks interdigitated
throughout association cortex. Thus components of the
green, violet, orange, and red networks in the 7-network
estimates are spatially adjacent in the parietal, temporal, and
frontal cortices (Fig. 11). A similar organization is observed in
the 17-network estimate (Fig. 13). However, such an impres-
sion could be an artifact of the winner-take-all implementation
of clustering that assigned each cortical vertex to a single
network. The complex functional connectivity fingerprints
demonstrated that regions within the same networks showed
similar functional connectivity fingerprints even when distrib-
uted across the cortex, consistent with their inclusion in com-
mon networks, but also revealed differences between regions
that suggest subtler organizational properties. In our final
analysis, we sought to explore patterns of functional connec-
tivity using an exclusively seed-based approach in a compre-
hensive manner to contrast connectivity patterns for multiple
regions embedded within the same networks.

For this analysis, six left hemisphere seed regions from each
of the four major association networks were analyzed begin-
ning with the canonical sensory-motor network (known as the
dorsal attention network in human neuroimaging literature).
The ventral attention, frontoparietal control, and default net-
works were subsequently explored. These four networks were
identified in the 7-network estimate based on the discovery
data set. Where possible, we used the same seed regions as
used for the other analyses in this article. For this reason, the

Fig. 28. Examples of satisfied and violated constraints in estimating the
functional hierarchy of cortical regions based on fcMRI. A functional hierar-
chy is estimated based on the assumption that regions closer in a hierarchy
have stronger correlation. A: 5 cortical regions are arranged in a 4-level
hierarchy whose functional connectivity strengths satisfy both hierarchical and
lateral constraints. B: identical arrangement of 5 cortical regions in a 4-level
hierarchy with different functional connectivity strengths that violate both
hierarchical and lateral constraints. Thick lines correspond to strong correla-
tions. Thin lines correspond to weak correlations. i: regions a and c are farther
apart than regions a and b. In the example in A, correlation of regions a and
c is weaker than correlation of regions a and b, so a hierarchical constraint is
satisfied. In the example in B, correlation of regions a and c is stronger than
correlation of regions a and b, so a hierarchical constraint is violated. ii:
regions c and d are on the same hierarchical level. In the example in A,
correlation of regions c and e is approximately the same as the correlation of
regions d and e, so a lateral constraint is satisfied. In the example in B,
correlation of regions c and e is stronger than the correlation of regions d and
e, so a lateral constraint is violated. In the context of hierarchy estimation in
this article, we consider 2 correlations within 0.2 of each other to be approx-
imately the same when assessing lateral constraints. Given the pairwise
correlations of a set of seed regions and a known number of levels in the
hierarchy, we can seek the best hierarchical arrangement of the seed regions
with the following local optimization procedure: 1) randomly arrange the seed
regions into a hierarchy, 2) consider swapping a pair of seed regions or shifting
a single seed region to a different hierarchical level without changing the
number of levels in the hierarchy such that the proportion of violated con-
straints is maximally decreased, 3) terminate when no further improvement in
the proportion of violated constraints can be achieved, and 4) repeat the
preceding steps 20 times, picking the solution with the least proportion of
violated constraints. The best solution obtained using this optimization proce-
dure is (in practice) the same as a brute-force search over all possible
hierarchical arrangements of the seed regions. We note that we are generally
unable to infer the number of levels in the functional hierarchy, since the
number of possible constraints can be drastically different for hierarchies with
a different number of levels, and so the proportion of violated or satisfied
constraints is not comparable across hierarchies with different levels. In
practice, however, the solution space is robust; for example, the best solution
for a 5-level hierarchy typically differs from the best solution for a 4-level
hierarchy by the collapsing of regions from 2 adjacent levels into 1 level.
Uncovering the true hierarchical structure in the macaque visual hierarchy
based on anatomical connectivity has also proved to be problematic (Hilgetag
et al. 1996).
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selected regions were not always the most confident in terms of
network assignment as assessed by their silhouette plots or
other means. Table 5 reports the coordinates of the seed
regions.

The left hemisphere fcMRI maps of the seed regions were
computed using the replication data set and are illustrated in
Figs. 32–35. Each seed region is functionally coupled primarily
to regions within the same network, thus largely confirming the
7-network estimate and the existence of multiple, large-scale
distributed networks in human association cortex. The network
patterns were even reproduced when target regions were iso-
lated in relation to adjacent cortical regions (e.g., Fig. 33A).
Thus this verifies that the networks identified via clustering
capture the predominant functional coupling patterns within
association cortex. Note that this result is not obligated; the
maps derived from the analysis of seed regions are not con-
strained to respect the borders of the networks defined by
clustering. Furthermore, although the broad patterns confirmed
the boundaries of the networks as expected, several exceptions
were also observed.

Close inspection of the maps (Figs. 32, 33, 34, and 35)
reveals evidence for cross talk among the networks, consistent
with the earlier analyses of the canonical sensory-motor path-
way. For example, Fig. 32, C and D, suggests interaction
between the dorsal attention network and regions within the
visual system, possibly related to the previously described
hierarchical flow of information within the sensory-motor path-
way (Fig. 29). In contrast, Fig. 32F suggests functional cou-
pling between the dorsal attention and the frontal components
of the frontoparietal control and ventral attention systems.

A further observation is that the fcMRI maps of seed regions
chosen from the same network anticipate fractionation of the
networks in ways also suggested by the analysis of connectiv-
ity fingerprints. For example, the PHC seed region is strongly
coupled with the RSP but not with the full extent of the
posterior cingulate (Fig. 35E). It is also strongly coupled to the

IPL but not the anterior IPL. This suggests that the 7-network
estimate is likely insufficient to capture the full complexity of
the functional couplings across different brain regions. As
predicted by the fcMRI map of the PHC seed, the 17-network
estimate differentiates the posterior IPL, RSP, and the posterior
PHC into an IPL-RSP-PHC system (dark blue in Fig. 13)
distinct from the other regions of the default network.

These collective results thus illustrate patterns of connectiv-
ity that are largely captured by a relatively small number of
interdigitated, large-scale networks but also reveal more de-
tailed properties that suggest cross talk and fractionation within
the major networks.

DISCUSSION

The present results suggest association cortex comprises the
majority of the human cerebral mantle and is made up of
multiple, interdigitated association networks. The properties of
association networks were found to be quite different from that
of sensory and motor cortices. Sensory and motor areas are
embedded within cerebral networks that are organized in a
topographic fashion forming preferentially local networks,
meaning that adjacent areas tend to show strong functional
coupling with one another. Hierarchical relations progress
from early visual areas to premotor areas. By contrast, multiple
association networks involve areas distributed throughout the
cortex, always including discrete regions within prefrontal,
parietal, temporal, and midline cortices. These distributed as-
sociation networks are interdigitated in a manner that yields
complex zones, particularly in parietal and prefrontal associa-
tion cortices. Within these zones, nearby regions possess mark-
edly different connectivity patterns that can be explained by
their being embedded within distinct association networks. In
the following sections we explore the details of these patterns
and discuss what the connectivity patterns suggest about how
the human cerebral cortex may have expanded during evolu-
tion.

Fig. 29. Functional connectivity estimates of
the hierarchical organization of a canonical
sensory-motor pathway. A: 6 seed regions
arranged into a 5-level functional hierarchy
using the replication data set. B and C: 2 best
hierarchical arrangements of the seed regions
as measured by the proportion of violated
hierarchical and lateral constraints. A viola-
tion occurred when the ordering placed more
strongly correlated regions farther apart in
the hierarchy than more weakly correlated
regions (see Fig. 28). D and E: 2 poor hier-
archical arrangements of the seed regions as
measured by the proportion of violated hier-
archical and lateral constraints. Relative or-
dering of the seed regions (A and B) within
the functional hierarchy agrees well with the
proposed macaque visual hierarchy (see
text).
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The Cerebral Cortex Comprises Multiple, Distinct
Functionally Coupled Networks

A primary result of our analyses is the cerebral maps
depicted in Figs. 11 and 13. Figure 11 displays a coarse
parcellation of the cerebral cortex into 7 functionally cou-
pled networks, and Fig. 13 displays a finer parcellation into
17 networks. These maps represent our current best estimate
of the organization of the human cerebral cortex based on
fcMRI. The large number of contributing subjects (N �
1,000) and surface-based alignment procedures helped to
detect topographical details with considerable confidence.
However, these maps are still limited in resolution owing to
between-subject averaging and the acquisition resolution of
the data and will presumably be improved in the future. At
their present resolution, they have been surprisingly infor-
mative for providing insights into cerebral organization and,
as illustrated by our companion paper (Buckner et al., in
press), they also provide a basis to explore the organization
of subcortical structures.

Two broad properties are immediately apparent when
examining the maps, which are the focus of discussion.
First, somatomotor and visual cortices form their own net-
works in the coarse parcellation that are fractionated into
subnetworks in the finer parcellation. The fractionations do
not follow simple divisions such as between somatosensory
and motor areas along the central sulcus or between early
(e.g., V1) and late (e.g., V3) retinotopic visual areas in the
occipital cortex. We discuss hypotheses about what these
fractionations might represent below. Second, association
cortex comprises multiple, interdigitated networks that are
distributed throughout cortex. Multiple aspects of these
networks, in particular the properties of the coarse networks
displayed in Fig. 11, have previously been described using
seed-based (e.g., Biswal et al. 1995; Greicius et al. 2003; Fox et al.
2006; Vincent et al. 2006) and independent component analysis
approaches (e.g., Beckmann et al. 2005; Damoiseaux et al. 2006;
De Luca et al. 2006). Many aspects of the organization, especially
within the higher resolution parcellation (Fig. 13), are novel. We
discuss the details of the organization of association cortex below
with particular focus on zones of parietal and prefrontal cortices
that represent nexuses of convergence among multiple, distinct
networks.

Visual Cortex Displays Local, Topographically Organized
Functional Coupling

Early visual areas were strongly functionally coupled to
one another and only minimally correlated to regions out-
side of visual cortex. Examining the coupling properties
more closely reveals evidence for an intrinsic gradient
within the early visual cortex that likely corresponds to the
transition from the central to peripheral visual field repre-
sentations (Figs. 15–17). The division is not absolute (Fig.
18) but appears as an abrupt division into central and
peripheral networks when assignments into distinct net-
works are forced, providing a convenient way to map the
topographical organization across visual areas. Inspection of
the boundaries of the functionally coupled networks on
visual areas suggests that the division of lower visual areas
into central and peripheral components might extend to
higher visual areas. The ventral boundary of the central and

Table 4. Locations of seed regions used for analysis of
connectivity fingerprints

Seed Region Coordinates

Parietal cortex/posterior cingulate
PGa �52, �50, 49
IPS2 �40, �37, 42
SPL7A �28, �61, 60
IPS3l �35, �56, 42
PGpd �49, �63, 45
PGpv �49, �69, 28
TPJ �51, �57, 27
PF �60, �37, 38
5Ci �16, �32, 39
PCC �3, �49, 25
pCun �10, �57, 35

Frontal cortex/anterior cingulate
PFCla �41, 55, 4
PFCl �38, 33, 16
PFCda �31, 39, 30
PFClp �45, 29, 32
PFCdp �44, 15, 48
PrCv �50, 6, 30
FEF �26, �6, 48
PFCv �55, �24, �13
6vr� �55, 6, 11
PFCm �7, 46, �2
PFCdm �4, 49, 32
PFCmp �5, 22, 47
Cinga �10, 13, 40
Cingm �5, 2, 29

Occipital/temporal cortex
STSa �49, 5, �26
STS �55, �10 �16
STSp �49, �34, �4
ITG �59, �53, �14
aMT� �51, �64, �2
MT� �45, �72, 3

Medial temporal/retrosplenial cortex
PHC �25, �31, �20
RSP �7, �50, 7

Seed regions correspond to locations in Figs. 30 and 31. Where possible,
seed regions were carried forward from previous analyses (i.e., IPS2, SPL7A,
FEF, PrCv, aMT�, and MT�; see Tables 2 and 3). Seed regions PF and PGa
were at or near human inferior parietal areas PF and PGa, respectively (Caspers
et al. 2006; 2008). The IPS3l seed region was selected to be on the lateral lip
of the IPS at or near human hIPS3, whereas the 5Ci seed region corresponded
to the human posterior cingulate sulcal region 5Ci (Scheperjans et al. 2008a;
2008b). PGpd and PGpv correspond to the dorsal and ventral aspects of area
PGp in the inferior parietal lobule (Caspers et al. 2006; 2008). The temporo-
parietal junction (TPJ) seed region was selected based on the peak coordinates
reported in a human fMRI study of mental state inference (Saxe and Powell
2006), which accords well with the predicted mean peak in a recent meta-
analysis on the same topic (Van Overwalle and Baetens 2009). Seed region
6vr� was selected to be anterior to the map of premotor area 6 (Geyer 2004)
and was labeled to reflect a new cytoarchitectonic delineation within the
ventral precentral region (Amunts et al. 2010). Seed region PFCv fell within the
histological map of BA45 (Amunts et al. 1999; Fischl et al. 2008). The
remaining seed regions were selected to provide comprehensive coverage of
the lateral and medial aspects of the cortical surface such that each association
network was represented by multiple targets. Labels for the remaining seed
regions were determined according to gross anatomical landmarks and were
given subscripts to denote relative positions: Cing, cingulate sulcus; pCun,
precuneus; ITG, inferior temporal gyrus; PCC, posterior cingulate cortex; PFC,
prefrontal cortex; PHC, parahippocampal cortex; RSP, retrosplenial cortex;
STS, superior temporal sulcus. Subscripts: a, anterior; p, posterior; l, lateral, m,
medial, d, dorsal; v, ventral. Coordinates reflect the approximate center
location based on the MNI atlas.
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Fig. 30. Adjacent parietal regions exhibit distinct functional connectivity fingerprints. Correlations of 8 parietal seed regions (center) with 22 cortical target
regions (top) from the replication data set, displayed as polar plots. Colors represent the 7-network segmentation (from Fig. 11). The coordinate locations are
reported in Table 4. Parietal seed regions that belong to the same network (e.g., TPJ, PGpv, and PGpd) have generally similar functional connectivity fingerprints
that are distinct from other parietal seed regions. Close inspection of the polar plots reveals distinct connectivity fingerprints even for parietal regions within the
same network, some of which anticipate the further fractionation of the parietal cortex in the 17-network estimate (Fig. 13). Note that the cortical targets from
anterior cingulate cortex to pCun on the left side of the polar plots are the same as that of the frontal polar plots (see Fig. 31) to allow for comparison across
the 2 sets of polar plots. The remaining cortical targets are different across the 2 sets of polar plots but are arranged so that cortical targets at the same location
in the polar plots belong to the same network in the 7-network estimate. The polar scales range from r � �0.4 (center) to r � 0.5 (outer boundary) in 0.3-step
increments.
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peripheral visual systems continued outside the V1-V3 com-
plex and divided V4v in two. Since the eccentricity repre-
sentation of the V1-V3 complex is continuous through V4v
(Brewer et al. 2005; Hadjikhani et al. 1998), it is likely that
V4v was also divided into central and peripheral compo-
nents. Anterior to V4v, at least two hemifield maps have

been found, all of which have a distinctly large foveal
representation, respond strongly to central visual stimuli
throughout their extent (Brewer et al. 2005; Wandell et al.
2005), and are therefore consistent with the inclusion of
these regions within the central visual system (but see
Hadjikhani et al. 1998).

Fig. 31. Adjacent frontal regions exhibit distinct functional connectivity fingerprints. The format and plotting are the same as for Fig. 30 with regions tailored
for exploration of frontal cortex. The coordinate locations are reported in Table 4. The polar scales range from r � �0.4 (center) to r � 0.5 (outer boundary)
in 0.3-step increments.
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However, there were inconsistencies as might be expected
because of limited resolution and the inherent complexity of
the visual cortex (see Wandell et al. 2007 for a review).
Multiple hemifield maps have been found in the extrastriate
cortex lateral to the V1-V3 complex (DeYoe et al. 1996;
Larsson and Heeger 2006; Tootell and Hadjikhani 2001), such
as regions that are part of the object-selective lateral occipital
complex (LOC; Malach et al. 1995) and motion-selective area
MT� (Huk et al. 2002; Malikovic et al. 2007; Tootell and
Taylor 1995). The inclusion of these entire visual regions
within the “central” visual system suggests a violation of the
central-peripheral division in these areas, although we note that
the ventral visual stream (of which human LOC is a part) is
dominated by signals from the fovea in the macaque monkey
(Baizer et al. 1991). The dorsal boundary of the central and
peripheral visual networks continued outside the V1-V3 com-
plex and cut through the hemifield maps dorsal and lateral to
V3v, possibly including V3A, V3B, and V7 (Larsson and
Heeger 2006; Swisher et al. 2007; Tootell et al. 1998). Because
these regions have separate foveal representation from the
V1-V3 complex (Wandell et al. 2007), and because of the
complex trajectory of the boundary through these regions,
we were unable to judge whether the central-peripheral
division applied to these regions.

The central-peripheral functional coupling of the human
visual system is consistent with many aspects of known anat-
omy. Anatomical studies in nonhuman primates have shown
that the topography of connections between visual areas gen-
erally respects the visual field representation (Cragg 1969;
Maunsell and Van Essen 1983; Van Essen and Zeki 1978; Zeki
1969). For example, a region of V1 that responds strongly to a
particular eccentricity and polar angle will project to the region

of V2 that responds strongly to the same eccentricity and polar
angle, presumably because of feedforward input (Van Essen
and Zeki 1978). Because of the larger receptive field size of
neurons in V2, the degenerated target area tends to be larger
than that of the source lesion. Our result of higher functional
connectivity strength between V1c and V3c (as well as be-
tween V1p and V3p) than between V1c and V1p may reflect
the topography of anatomical connections within the visual
system.

If anatomical connectivity respects visuotopic representation
and functional connectivity is constrained by anatomical con-
nectivity, the question then arises as to why the clustering
analysis divided the visual areas (especially the lower visual
areas) into central and peripheral regions, rather than into
upper and lower visual fields. A split along the eccentricity axis
is supported by proposals that higher visual areas are organized
according to central vs. peripheral field bias (Baizer et al. 1991;
Grill-Spector and Malach 2004; Levy et al. 2001), although
such an organization has also been disputed (Wandell et al.
2005, 2007). A more mundane and likely reason is that eccen-
tricity representation runs in parallel across multiple visual
areas in contrast with angular representation that alternates in
visual field sign across multiple visual areas (see Fig. 1 in
Larsson and Heeger 2006; Sereno et al. 1995). Because this
study utilized smoothing and intersubject averaging to boost
SNR, any topography in functional connectivity that respects
the high spatial frequency of angular representation is likely to
be washed out. The resulting limitation in spatial resolution
might also explain why visual regions dominated by foveal
signals are grouped entirely within the central visual system
even though they possess quarterfield or hemifield representa-
tions spanning both central and peripheral vision.

Together, these observations suggest that functional con-
nectivity of the visual cortex followed the topographic
organization of these areas up to a point. Certain observa-
tions, such as the lack of functional connectivity topography
reflecting angular visual representation, could not be recon-
ciled with prior anatomical observations. These differences
may reflect the limitations of our approach, true differences
between fcMRI and anatomical connectivity, or novel connec-
tivity findings that have yet to be revealed in anatomical
studies. We discuss these limitations and ambiguities later.

Somatomotor Cortex Displays Topographical Organization

Estimates of functional connectivity networks grouped mul-
tiple somatosensory and motor areas into a single functionally
coupled network for the low-resolution estimate of cortical
organization (Fig. 11) and into a dorsal-ventral division for the
high-resolution estimate (Fig. 13).4 Like visual cortex, the
somatomotor network was characterized by its strong func-
tional coupling to nearby areas but absence of functional
coupling to distributed regions across the cortex (barring re-
gions across the insular cortex). Even when regional analyses
were explored that did not constrain the topography to form
separate networks, no evidence was found for functional cou-

4 Auditory cortex was also functionally coupled to the ventral somatomotor
network. However, as illustrated in Fig. 14, this may be an artifact of signal
bleeding across the insula in volumetric space. For this reason, although the
finding may reflect a meaningful functional interaction, we do not discuss it
further in the present article.

Table 5. Locations of seed regions used for analysis of parallel
networks in association cortex

Seed Region Coordinates Confidence

Dorsal attention A �22, �8, 54 0.54
Dorsal attention B �34, �38, 44 0.53
Dorsal attention C �18, �69, 51 0.46
Dorsal attention D �51, �64, �2 0.55
Dorsal attention E �8, �63, 57 0.32
Dorsal attention F �49, 3, 34 0.49
Ventral attention A �31, 39, 30 0.49
Ventral attention B �54, �36, 27 0.63
Ventral attention C �60, �59, 11 0.27
Ventral attention D �5, 15, 32 0.65
Ventral attention E �8, �24, 39 0.57
Ventral attention F �31, 11, 8 0.67
Control A �40, 50, 7 0.52
Control B �43, �50, 46 0.51
Control C �57, �54, �9 0.25
Control D �5, 22, 47 0.43
Control E �6, 4, 29 0.27
Control F �4, �76, 45 0.25
Default A �27, 23, 48 0.46
Default B �41, �60, 29 0.63
Default C �64, �20, �9 0.61
Default D �7, 49, 18 0.60
Default E �25, �32, �18 0.22
Default F �7, �52, 26 0.61

Seed regions correspond to locations in Figs. 32–35. The confidence of the
seed regions in their network assignment was computed from the replication
data set. Coordinates reflect the approximate center location based on the MNI
atlas.
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pling to distributed cortical regions. Figure 19 shows that the
motor component of the somatomotor network included MI
(area 4) and caudal premotor area 6, whereas the somatosen-
sory component included SI and most, if not all, of early
somatosensory area 5L. The somatomotor network also in-
cluded a small portion of the midcingulate sulcus and possibly
part of area 5M. Within the somatomotor cortex of nonhuman
primates, areas 1 to 6 are densely, but not fully, connected (see
meta-analysis in Felleman and Van Essen 1991) by association
fibers that enter the white matter and reenter the cortex (Jones
et al. 1978).

The nonhuman primate premotor area 6 has been subdivided
into rostral and caudal areas that may provide further insight
into the functional connectivity patterns (Barbas and Pandya
1987; Matelli et al. 1985, 1991; Zilles et al. 1995). The caudal
premotor areas are densely and topographically connected to
M1 but not to the prefrontal cortex. In contrast, the rostral
premotor areas are connected to prefrontal cortex but not M1
(Barbas and Pandya 1987; Luppino et al. 1993; Matelli et al.
1986). The caudal premotor areas are also more densely

connected to each other than the adjacent rostral premotor
areas. Although there are competing hypotheses over the exact
homology between primate and human premotor areas (Geyer
2004; Petrides 2005; Rizzolatti et al. 1998), converging studies
have suggested a rostrocaudal subdivision of human premotor
cortex (see chapter 4.4 of Geyer 2004 for a review), which
might reflect the absorption of caudal human area 6 into the
somatomotor network as revealed by functional coupling. De-
spite evidence that the early somatosensory and late motor
fields are densely integrated, we must be cautious of the
possibility of fMRI signal blurring across the central sulcus,
which may cause an overestimation of functional coupling
between the parallel strips of SI, MI, and premotor area 6.

Of most interest, the analysis also revealed a dorsoventral
division of the somatomotor strip, which was confirmed by
targeted regional analyses (Fig. 20). In nonhuman primates, the
connections between the different somatosensory-motor areas
are generally topographic so that, for example, the hand region
of area 2 receives projections from the hand region of areas 3
and 1 (Pons and Kaas 1986). In addition, the somatomotor

Fig. 32. Functional connectivity for regions within the canonical distributed cortical network. This network is often called the dorsal attention network. The 6
seed regions are displayed in the center overlaid on top of the 7-network parcellation from Fig. 11. The coordinate locations are reported in Table 5. Each panel
A–F displays the functional connectivity map for 1 of the 6 seed regions for the replication data set overlaid on a surface that shows the 7-network boundaries
(in light black lines) as reference. Each seed region displays functional coupling with all of the regions of the distributed network. However, there are important
differences between regions. In particular, the regions near aMT� (D) and SPL7A (C) show strong functional coupling with earlier visual areas. The region at
or near the putative homolog of FEF (A) shows minimal functional coupling with earlier visual areas but does show strong coupling with midline motor regions
(see midline section of A). The color scale (bottom) shows the plotted correlation range for the maps.
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association fibers have been reported to terminate in mediolat-
erally oriented strips (see for example Fig. 4 in Jones et al.
1978; Jones and Wise 1977), although others have raised
questions concerning the striplike nature of callosal connec-
tions (Gould et al. 1986; Killackey et al. 1983). Our observa-
tions of fcMRI correlations within the human somatomotor
cortex, whose anteroposterior extents were shorter than their
mediolateral extents, were therefore consistent with the obser-
vations of ipsilateral striplike anatomical connections. One
possibility is that the dorsoventral boundary revealed by our
clustering analysis might correspond to the boundary of the
face and body representations.

Evidence for a Prototype Distributed Cortical Pathway

The results discussed above reveal interesting organiza-
tional properties of local networks of areas within somato-
motor and visual cortices. In considering the organization of
the cerebral cortex, an immediate question arises as to how
information in the sensory systems might propagate to
influence motor representations. Functional connectivity is
limited in its ability to provide insight into this question, but
some aspects of the results are informative and consistent

with anatomical and physiological studies of sensory-motor
pathways.

The canonical sensory-motor pathway that has been studied
in the monkey is the pathway that includes retinotopic visual
cortex, the MT� complex, parietal area LIP, and the FEF (e.g.,
Andersen et al. 1990; Colby and Goldberg 1999; Gold and
Shadlen 2007; Shadlen and Newsome 2001). The basic idea is
that incoming visual information propagates from early visual
areas to MT�, which provides constraints on decision pro-
cesses that arise from interactions with LIP and FEF. FEF, in
turn, interacts with motor regions to generate motor signals.
Hierarchical anatomical connections support such a pathway
(Felleman and Van Essen 1991; Maunsell and Van Essen
1983). The question here is whether the human functional
connectivity results also reveal evidence for such a pathway
and, if so, what properties emerge.

Of particular interest are the quantitative results presented
in Figs. 22–27 that reveal interactions between distinct
networks. Although primary visual cortex is largely absent
functional coupling to association or premotor cortices, it is
topographically coupled to MT� (Fig. 22), which is in turn
strongly coupled to aMT� as well as modestly coupled to

Fig. 33. Functional connectivity for distributed regions within a second large-scale association network. This network is often called the ventral attention network
(but see Fig. 12 legend). The format and plotting are the same as for Fig. 32, and coordinate locations are reported in Table 5. Each seed region is functionally
coupled mostly with regions within the same network, revealing that each component of the network recapitulates the others. There is a general absence of cross
talk between networks except for local correlation around the seed regions.
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parietal regions including SPL7A (Figs. 24 and 25). aMT�
is functionally coupled to PrCv and FEF (Fig. 25), complet-
ing the pathway. Although the organization of the human
MT� complex is still unresolved, human MT� is thought to
include the human homologs of macaque MT, MST, and
FST (Amano et al. 2009; Huk et al. 2002; Kolster et al.
2010). Based on its location, aMT� might correspond to
macaque MST/FST (Maunsell and Van Essen 1983; Unger-
leider and Desimone 1986) or TEO/PIT (Felleman and Van
Essen 1991; von Bonin and Bailey 1947). Our observation
that aMT� is less correlated with V1 than MT� (Figs. 22
and 23) is therefore consistent with multiple studies show-
ing that macaque TEO/PIT or MST/FST is less densely
connected with V1 compared with MT (Distler et al. 1993;
Felleman and Van Essen 1991; Markov et al. 2010). Al-
though there are uncertainties to using functional connec-
tivity to infer hierarchical arrangements among areas, if one
uses the simple assumption that the more strongly two areas
are functionally coupled together, the closer they are to one
another in a processing hierarchy, a sensory-motor process-
ing hierarchy emerges that is consistent with the extant
literature (Figs. 28 and 29).

Analysis of interactions among networks illustrates a
number of further points. Most critically, the hierarchy
across networks reveals how a distributed network might
serve as a bridge between sensory and motor networks that
themselves possess preferentially local interactions (result-
ing in their parcellation into their own networks in Figs. 11
and 13). One speculation is that the distributed cortical
network illustrated as the green network in Fig. 11, and
known within the neuroimaging literature as the dorsal
attention system, is the prototype distributed cortical net-
work. It possesses multiple properties that are common to all
association networks. Specifically, its component regions
are distributed throughout temporal, parietal, and frontal
cortices and show strong functional couplings between all
pairs of regions (Fig. 32). We speculate that this network is
a prototype, because it is more strongly functionally coupled
to extrastriate sensory regions and premotor regions than the
remaining association networks that are discussed later and
also because it is well represented in the macaque. The
presence of similar networks in humans and macaques
suggests that they are homologous and thus were present in
the last common ancestor, which lived about 25–30 million years

Fig. 34. Functional connectivity for distributed regions within a third large-scale association network. This network is often called the frontoparietal control
network. The format and plotting are the same as for Fig. 32, and coordinate locations are reported in Table 5. In addition to a general absence of cross talk
between networks, this network also shows no functional coupling to sensory and motor regions. Rather, its topography reveals a distributed network that is
interdigitated with the networks illustrated in Figs. 32, 33 and 35.
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ago (Pilbeam and Young 2004). As discussed in the next section,
the remaining distributed association networks, which in the
human represent the majority of association cortex, display the
same general organization but appear to have lost direct functional
coupling to sensory and motor regions, at least insofar as mea-
sured by intrinsic functional connectivity.

Another important feature of this hierarchy is apparent
when one considers finer details of the functional coupling
patterns. Within the broad hierarchy, there is evidence for
specialization indicative of parallel hierarchical arrange-
ments. This is perhaps best illustrated by the differential
functional coupling of premotor regions FEF and PrCv with
the multiple regions localized around the superior parietal
lobule (Figs. 26 and 27). Anatomical tracing work in the
macaque has suggested two segregated sensory-motor path-
ways from parietal cortex to dorsal and ventral aspects of
frontal cortex, including premotor cortex (Kurata 1991;
Rizzolatti et al. 1998; Tanné-Gariépy et al. 2002) and FEF
(Petrides and Pandya 2006; Stanton et al. 1995). These
frontoparietal connections have a dorsomedial to ventrolat-

eral axis: dorsal portions of caudal frontal cortex are pref-
erentially connected to medial and dorsal parts of parietal
cortex including the superior parietal lobule and medial
parietal cortex, whereas caudal ventral frontal cortex pref-
erentially communicates with lateral and ventral aspects of
parietal cortex and largely lacks connections with dorsal and
medial parietal areas. Our demonstration that PrCv was
strongly correlated with more ventral portions of rostral SPL
and IPS, whereas FEF was strongly correlated with caudal
SPL and IPS (Figs. 26 and 27), is consistent with descrip-
tions of frontoparietal sensory-motor circuits in the ma-
caque. Thus evidence for specialization of subpathways is
present in this canonical sensory-motor pathway. Taking the
speculation that this canonical pathway represents the pro-
totype distributed association network, it is tempting to
wonder whether the interdigitated association networks that
comprise the remaining human association cortex are evo-
lutionary expansions of this basic prototype with multiple,
interdigitated pathways that have become nearly completely
differentiated.

Fig. 35. Functional connectivity for distributed regions within a fourth large-scale association network. This network makes up the prominent components of the
network often called the default network. The format and plotting are the same as for Fig. 32, and coordinate locations are reported in Table 5. Each seed region
is functionally coupled mostly with regions within the same network, again revealing that each component of the network recapitulates components the remaining
network, with some exceptions. For example, the seed region in the parahippocampal cortex (E) shows functional connectivity with the retrosplenial cortex,
ventral medial prefrontal cortex, and a specific region with the caudal IPL. These patterns of functional connectivity lead to the fractionation into subnetworks
as illustrated in Fig. 13. The fractionation of this particular network is largely to subdivide the broader network, rather than to display functional coupling with
regions in distinct networks.
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Association Cortices Are Nexuses of Regions With Distinct
Connectivity Fingerprints

Association cortex, in particular parietal cortex near the
inferior parietal lobule, has been challenging to characterize.
Human association cortex shows disproportionate expansion in
relation both to macaque and great apes (Preuss 2004; Van
Essen and Dierker 2007; Hill et al. 2010). In a few instances,
it is an open question as to whether homologies should be
expected (Orban et al. 2006). For example, in his seminal work
in 1909, Korbinian Brodmann noted that the human inferior
parietal lobule included two cytoarchitectonic areas that are
absent in the monkey (areas 39 and 40). The possibility that
these association areas are vastly expanded in hominid evolu-
tion, or are even novel areas altogether, figured prominently in
the classic description of disconnection syndromes by Ge-
schwind (1965). For these reasons anatomical connectivity in
the monkey cannot uniformly be presumed to apply to the
human. Adding further complication, nearby regions of asso-
ciation cortex are often active across quite distinct forms of
tasks suggesting functional diversity (e.g., Culham and Kan-
wisher 2001). As extreme examples of functional diversity,
parietal regions near the superior parietal lobule, including
those discussed in the preceding section, respond during sen-
sory-motor decision tasks (Corbetta and Shulman 2002). Re-
gions near the temporoparietal junction respond during social
tasks that require participants to infer what others are thinking
(Saxe 2006; Van Overwalle and Baetens 2009), and regions
within the caudal portion of the inferior parietal lobule respond
during episodic remembering (Cabeza et al. 2008; Vilberg and
Rugg 2008; Wagner et al. 2005).

Our results demonstrate that parietal association cortex in-
cludes multiple nearby regions that possess markedly different
connectivity profiles that parallel similar distinctions in pre-
frontal cortex. The results in parietal cortex are anticipated by
both anatomical studies in the monkey and prior studies using
human functional connectivity. Specifically, the caudal portion
of macaque 7a, labeled Opt by Pandya and Seltzer (1982), has
connections to the parahippocampal cortex, retrosplenial cor-
tex, and posterior cingulate (Andersen et al. 1990; Lavenex et
al. 2002; Seltzer and Pandya 1994; Suzuki et al. 1994). Nearby
areas, such as LIP, are preferentially connected to visual
association cortex and premotor areas, leading Andersen et al.
(1990) to note that “area 7a appears to be very different from
other visual areas in the inferior parietal lobule in that it is the
only area that connects to some of the highest centers of the
brain.” Examination of functional connectivity of parietal as-
sociation cortex in the human has also revealed notable diver-
sity. Vincent et al. (2006) illustrated that neighboring parietal
regions are functionally coupled to distinct sensory-motor and
limbic circuits. In later studies, parietal association cortex was
found to possess between three (Vincent et al. 2008) and four
(Nelson et al. 2010) distinct zones distinguished by their
functional connectivity profiles (see also Sestieri et al. 2011).

Differential functional coupling across parietal and prefron-
tal regions are displayed in Figs. 30 and 31. Drawing from
Passingham et al. (2002), we refer to these regional connec-
tivity profiles as fingerprints because they illustrate the con-
nectivity patterns across regions that make them distinct. In
examining the many fingerprints, several principles emerge
that provide insight into cortical organization. First, nearby

regions can show abrupt transitions in their connectivity fin-
gerprints. The transitions from SPL7A to IPS3l and from IPS3l

to PGpd are such examples. SPL7A, which may be at or near
the human homolog to macaque LIP, is functionally coupled to
extrastriate (MT� and aMT�) and premotor (FEF and PrCv)
regions. IPS3l shows a fundamentally distinct connectivity
fingerprint with coupling to prefrontal regions that are within
dorsolateral prefrontal cortex (PFCl and PFClp) and amodal
posterior temporal association regions (ITG). IPS3l is absent
coupling to sensory or motor regions. PGpd is distinguished by
prominent functional coupling to limbic regions including
PCC, RSP, and PHC. This tripartite division separates the
major parietal zones that form the dorsal attention, frontopari-
etal control, and default networks discussed extensively in the
human neuroimaging literature (green, orange, and red net-
works in Fig. 11).

Second, within these broad divisions there are further dis-
tinctions that demarcate more subtle regional differences.
Across these regions, most connectivity properties are shared,
but there are also key differences, forming “connectional
families” of regions (see Passingham et al. 2002 for discus-
sion). These differences within connectional families lead to
the finer parcellation observed in Fig. 13 and are likely of
functional importance. For example, the TPJ and PGpv possess
similar connectivity fingerprints, and both fall within the
broader network that is globally called the default network.
However, the TPJ is preferentially coupled to medial prefrontal
regions (PFCdm), the PCC and pCun, and the superior temporal
sulcus (STS and STSp). Although PGpv possesses a broadly
similar fingerprint, it is also prominently coupled to regions
associated with the medial temporal lobe memory system (RSP
and PHC). This is of particular interest because both of these
parietal association regions have been proposed to be involved
with higher mental functions linked to internal mentation and
social cognition (see Buckner et al. 2008 for review), but
functional distinctions have also been noted (e.g., Rosenbaum
et al. 2007).

The final organizational principle that emerges is that asso-
ciation regions belonging to the same connectional families can
always be found widely distributed across the cortical mantle.
Contrasting the fingerprints of regions within prefrontal cortex
(Fig. 31) with those falling within parietal cortex (Fig. 30)
illustrates this last principle. PFCdm and TPJ are prime exam-
ples. These regions possess nearly the same functional connec-
tivity fingerprints that differ from nearby regions within their
own lobes. This accounts for why these distributed regions
form such tightly coupled functional connectivity networks and
suggests that association cortex might be best conceptualized
as a series of interdigitated, distributed networks.

Association Cortex Comprises Multiple, Interdigitated
Large-Scale Circuits

The majority of the human cerebral cortex is made up of
multiple large-scale networks that include functionally coupled
regions distributed across the brain. Such organization is ap-
parent in prior studies (e.g., Beckmann et al. 2005; Damoi-
seaux et al. 2006; De Luca et al. 2006; Fox et al. 2006; Greicius
et al. 2003, 2004; Vincent et al. 2008) and is evident in all of
the analyses presented in this article. By analyzing the com-
plete topography of the cortical surface, we were further able to
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illustrate that the multiple, distributed networks are interdigi-
tated with one another, forming complex convergence zones in
parietal and prefrontal association cortices (Figs. 32–35). What
do these patterns suggest about the organization of the cerebral
cortex?

At the broadest level, these observations emphasize the need
to adopt network approaches when exploring cerebral function.
By network approach, we refer to the idea that the relevant
functional unit may be the interconnected network itself, as
suggested by Mesulam (1981, 1986) and Goldman-Rakic
(1988). Mesulam (1981) proposed a network approach as an
alternative to centrist approaches to localization, in which
complex functions relied on specific cortical areas exclusively
devoted to that function. While recognizing that functional
specializations exist among areas of the same network, the
network framework emphasizes that functions arise as emer-
gent properties of these reciprocally connected systems of
brain areas (see Fig. 4 of Mesulam 1981, 1990). In other words,
distributed systems of areas, spanning different cortical lobes
and subcortical structures, form functional units via their dense
interconnections. This is a quite different organization than is
evident in sensory cortex, which is characterized by dense
connectivity among local areas. The two frameworks are not
entirely different because all areas are presumably embedded
within systems of interacting brain areas; however, the focus in
many theories is on processing specialization within areas and
processing hierarchies among neighboring areas. The present
analyses suggest that functional unit of interest may be the
distributed network itself.

Goldman-Rakic (1988) offered three specific anatomical
observations that provide evidence for distributed cerebral
networks. First, prefrontal and parietal areas that are directly
connected to one another also tend to have convergent projec-
tions to additional temporal and limbic areas (see Fig. 3 of
Goldman-Rakic 1988). Second, interconnected association ar-
eas are tied together by common thalamic connections. Third,
arguing against a typical hierarchical model of cortical orga-
nization, interconnected association areas tend not to have
laminar projection patterns with clear feedforward and feed-
back relations (also see Felleman and Van Essen 1991). We
suspect that the distributed networks that comprise the majority
of human association cortex are networks of this type: highly
interconnected, without strong hierarchical relations among
areas, and integrated into a common functional unit of some
form. This does not mean that areas within prefrontal and
parietal cortices are making the same contributions to the
network, but the emphasis does shift to asking how the
separate networks make distinct functional contributions,
rather than asking how different areas within prefrontal or
parietal cortices may be locally differentiated. That is,
association cortex is characterized by multiple modules
(Bullmore and Sporns 2009) that are each made up of nodes
distributed widely across the cortex.

Of further interest, the distributed cerebral networks con-
verge on regions of association cortex that are late to develop
in terms of myelination (see Fig. 3 of Catani and ffytche 2005)
and cortical surface area (Hill et al. 2010) and are expanded in
the human brain relative to the modern macaque brain (Van
Essen and Dierker 2007). For these reasons, it is likely that
distributed association networks have been under strong selec-
tive pressure to expand in recent hominid evolution. The

network parcellations presented in Figs. 11 and 13 provide a
current best estimate of the organization of the interdigitated
networks that comprise human association cortex.

Caveats and Limitations

Measuring functional connectivity is not the same as directly
measuring anatomical connectivity. Functional connectivity is
constrained by anatomical connectivity (e.g., Honey et al.
2009; Johnston et al. 2008), but those constraints are not
restricted to monosynaptic connectivity. For example, func-
tional coupling is present between the two hemispheres for
striate cortex in the macaque (Vincent et al. 2007), whereas
interhemispheric connections are absent except at the border of
V1 (Van Essen and Zeki 1978). The pervasiveness of func-
tional coupling is both a weakness and strength of the tech-
nique, because it allows one to map large-scale polysynaptic
circuits but leaves ambiguities and uncertainties, which require
follow-up by other methods such as diffusion imaging tech-
niques and detailed examination of homologies to nonhuman
primates. Cerebrocerebellar circuits are a place that perhaps
best illustrates that functional connectivity is constrained by
anatomy but is more pervasive than monosynaptic connectiv-
ity. Cerebrocerebellar circuits, which are exclusively polysyn-
aptic (Evarts and Thach 1969; Kemp and Powell 1971; Strick
1985), demonstrate functional coupling that tracks the con-
tralateral organization of anatomical projections and is topo-
graphically specific as described in our companion paper
(Buckner et al., in press). Thus functional connectivity is
informative but should not be considered a direct measure of
anatomical connectivity. Functional connectivity also appears
sensitive to other factors, including recent experience and the
state of the subject during scanning (Buckner 2010; Fox and
Raichle 2007; Moeller et al. 2009). An assumption made in the
present article is that the dominant contribution to the mea-
sured correlations reflect stable properties of cortical architec-
ture, an assumption that we believe is warranted but nonethe-
less needs to be made explicit as boundary conditions and
violations of this assumption may emerge.

A further limitation of the present work is resolution. Even
at the relatively finer resolution of the 17-network estimate,
discrete components of a given network likely span multiple
cytoarchitecturally distinct cortical areas. The association net-
works described in this article are at a coarser resolution than
the networks inferred by Goldman-Rakic (1988) and others in
the macaque. Our limited data resolution, as a result of voxel
size, smoothing, and intersubject averaging, including potential
errors in surface-based alignment, may miss important features
of the cortical topography, and the results should be interpreted
accordingly. Future high-resolution studies of individuals may
provide better estimates of cortical topography.

A final limitation is our use of clustering to parcellate the
cerebral cortex. The assumption made by the clustering ap-
proach is that each vertex belongs to a single network. Our
seed-based analyses (Figs. 32–35) suggest that this is a rea-
sonable beginning point for analysis, even though cross talk
exists between networks. However, there are specific places
where the parcellation results might be particularly sensitive to
inaccuracies, including the characterization of cortical regions
that serve as putative hubs of communication between net-
works (Buckner et al. 2009; Hagmann et al. 2008; Mesulam
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1998). We also note that the 17-network estimate does not
cleanly fractionate individual networks within the 7-network
estimate, implying that cortical networks are not spatially
organized in a strictly hierarchical fashion (where “hierarchy”
refers to the spatial organization of the networks, rather than
the concept of “hierarchical processing pathways”) like that
suggested in the toy example (Fig. 5). Our efforts to enforce
strict subdivisions of coarser networks by using hierarchical
clustering (not shown) failed to provide stable results across
the discovery and replication data sets. Recent advances in
graph theoretic clustering approaches are promising in provid-
ing the possibility for regions to belong to multiple networks or
communities (e.g., Ahn et al. 2010).

Conclusions

Different regions of the cerebral cortex display distinct
characteristics. Functional connectivity of retinotopic visual
areas display dense local functional coupling that is organized
across areas in a fashion that respects functional topography.
Association cortex is made up of multiple, interdigitated large-
scale networks that, while exhibiting cross talk, possess pre-
dominantly parallel organization. The map of these cerebral
networks is provided as a reference for future functional
characterization and confirmation by complementary ap-
proaches that can directly visualize anatomic connectivity.
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