
Deep speech-to-text models capture the neural basis of spontaneous speech in
everyday conversations

Ariel Goldstein1,2, Haocheng Wang3*, Leonard Niekerken3,4*, Zaid Zada3*, Bobbi Aubrey3*, Tom Sheffer2*, Samuel
A. Nastase3*, Harshvardhan Gazula3,5, Mariano Schain2, Aditi Singh3, Aditi Rao3, Gina Choe3, Catherine Kim3,
Werner Doyle6, Daniel Friedman6, Sasha Devore6, Patricia Dugan6, Avinatan Hassidim2, Michael Brenner2,7, Yossi
Matias2, Orrin Devinsky6, Adeen Flinker6, Uri Hasson3

1Department of Cognitive and Brain Sciences and Business School, Hebrew University, Jerusalem, Israel
2Google Research
3Department of Psychology and the Princeton Neuroscience Institute, Princeton University, Princeton, NJ
4Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University,
Maastricht, The Netherlands
5Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical
School, Boston, MA
6New York University School of Medicine, New York, NY
7School of Engineering and Applied Science, Harvard University, Boston, MA
*Equal contribution
☩Corresponding author: ariel.y.goldstein@gmail.com

Abstract

Humans effortlessly use the continuous acoustics of speech to communicate rich linguistic
meaning during everyday conversations. In this study, we leverage 100 hours (half a million
words) of spontaneous open-ended conversations and concurrent high-quality neural activity
recorded using electrocorticography (ECoG) to decipher the neural basis of real-world speech
production and comprehension. Employing a deep multimodal speech-to-text model named
Whisper, we develop encoding models capable of accurately predicting neural responses to
both acoustic and semantic aspects of speech. Our encoding models achieved high accuracy
in predicting neural responses in hundreds of thousands of words across many hours of
left-out recordings. We uncover a distributed cortical hierarchy for speech and language
processing, with sensory and motor regions encoding acoustic features of speech and
higher-level language areas encoding syntactic and semantic information. Many
electrodes—including those in both perceptual and motor areas—display mixed selectivity for
both speech and linguistic features. Notably, our encoding model reveals a temporal
progression from language-to-speech encoding before word onset during speech production
and from speech-to-language encoding following word articulation during speech
comprehension. This study offers a comprehensive account of the unfolding neural responses
during fully natural, unbounded daily conversations. By leveraging a multimodal deep speech
recognition model, we highlight the power of deep learning for unraveling the neural
mechanisms of language processing in real-world contexts.
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Introduction

One of the ultimate goals of our collective research endeavor in human neuroscience is to
model and understand how the brain supports dynamic, context-dependent behaviors in the
real world. Perhaps the most distinctly human behavior—and the focus of this paper—is our
capacity for using language to communicate our thoughts to others during free, open-ended
conversations. Natural language, as it occurs in daily conversations, is highly complex. It
encompasses numerous linguistic rules, sub-rules, and exceptions and is influenced by
discourse context, meaning, dialect, and other factors 1–3. Traditionally, neurolinguistics has
approached real-world language's complex and multidimensional nature by employing an
incremental divide-and-conquer strategy. Individual labs have employed clever experimental
manipulations to isolate and computationally model specific aspects of language processing
divorced from the broader context. The implicit aspiration behind this collective effort is to
eventually integrate these fragmented studies into a comprehensive neurocomputational
model of natural language processing 4–6. After decades of research, however, there is
increasing awareness of the gap between controlled laboratory experiments and the
complexity of everyday life 7,8. Models and theories developed in a particular experimental
context often fail to generalize to other, more ecological contexts 9–11. To make matters even
more challenging, language and communication are spontaneous, dynamic, and
fundamentally contextual, unamenable to many core tenets of experimental design (e.g.,
repetition and trial averaging 12.

To study the neural basis of natural language processing in the real world, we developed a
new electrocorticography (ECoG) paradigm to measure human neural activity in real-world,
naturalistic contexts at scale—during hundreds of hours of open-ended conversations,
comprising both speech production and speech comprehension. Unlike traditional ECoG
studies, which typically rely on controlled experiments performed over short durations, our
dense-sampling paradigm enabled continuous 24/7 recording of ECoG and speech data
during extended days- to week-long stays in the hospital epilepsy unit. This ambitious effort
resulted in a uniquely large ECoG dataset of natural conversations: four patients recorded
during free conversations, yielding approximately 50 hours (226,776 words) of neural
recordings during speech comprehension and 50 hours (283,736 words) during speech
production in real-world settings. Modeling the neural basis for natural language processing in
open-ended conversations presents an unprecedented challenge, given that we have no
experimental control and no two conversations are the same. Patients are free to say
whatever they want, whenever they want, with no experimental intervention. Some
conversations are with family members and friends, some with the hospital support team, and
some with the doctors. Each conversation has its own context and purpose.
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To model neural activity during real-life conversations, we relied on a new family of deep
language models that can accommodate the complexity, multidimensionality, and
context-dependent nature of language processing 13–16. However, most modern language
models are trained to process large corpora of text; processing continuous speech into
discrete words poses a cognitive challenge for these models, as it requires continuous
parsing of speech sounds into meaningful lexical units. In this work, we leverage a multimodal
neural network model called Whisper that learns to process spoken language in real-world
contexts 17. The Whisper architecture incorporates both a multilayer “encoder” network and a
multilayer “decoder” network (Fig. 1): the “encoder” maps continuous speech inputs into a
high-dimensional embedding space capturing acoustic features of speech; the decoder maps
discrete lexical (i.e., word) tokens into an embedding space capturing the contextual structure
of language, similar to other autoregressive language models 18–20. We extracted two types of
embeddings from Whisper for each word heard or produced by the patients in each
conversation: (1) embeddings extracted from the “encoder” network, which we refer to as
“speech embeddings”; and (2) embeddings extracted from the “decoder” network, which we
refer to as “language embeddings”.

Prior studies have demonstrated that embeddings in acoustic encoders like wav2vec learn
the phonemic structure of natural speech21, while embeddings in language models like GPT-2
20,22 learn the syntactic and semantic structure of natural language 15,23–25. Both of these types
of models have begun to show promising results in modeling neural responses, in low-level
auditory cortex and higher-level language areas, respectively 26–33. The multimodal architecture
of Whisper enables us to jointly model and dissociate speech and language processing using
components of the same model. Furthermore, capitalizing on the high spatiotemporal
resolution of ECoG, Whisper allows us to capture the temporal interplay between speech
comprehension and spontaneous speech production in completely unconstrained real-world
conversations.

We constructed two sets of electrode-wise encoding models to estimate a linear mapping
from both speech embeddings and language embeddings extracted from Whisper to the
neural activity for each word during both speech production and comprehension. Our
encoding moles revealed a remarkable alignment between the human brain and the internal
representations of the speech-to-text model. Speech embeddings better captured cortical
activity in both lower-level speech perception and speech production areas, including the
superior temporal cortex and precentral gyrus. Linguistic embeddings, on the other hand,
were better aligned with higher-order language areas like the inferior frontal gyrus and angular
gyrus. Additionally, prior to each word onset during speech production, we observed a
temporal sequence from language-to-speech encoding across cortical areas; during speech
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comprehension, we observed the reverse progression from speech-to-language encoding
after word articulation. Our findings provide strong evidence that deep speech-to-text models
can provide a novel modeling framework for the neural basis of both language production and
comprehension across large volumes of real-world data without sacrificing the diversity and
richness of natural language.

Results

We collected continuous 24/7 recordings of ECoG and speech signals from four patients as
they engaged in spontaneous conversations with their family, friends, doctors, and hospital
staff during their entire days-long stay at the epileptic unit. Across the four patients, we
recorded neural signals from 676 intracranial electrodes (Fig. 1). Because only one of the four
patients had 22 electrodes implanted in the right hemisphere, we focused on left hemisphere
electrodes (n = 654) in our analyses; 10 electrodes were excluded due to incomplete
recordings, leaving 644 electrodes for analysis. We obtained extensive coverage of key
language areas, including in the inferior frontal gyrus (IFG, also known as Broca’s area; n = 75)
and superior temporal gyrus (STG; n = 45), with a sparser sampling of angular gyrus (AG; n =
35). We built a preprocessing pipeline to identify the occurrence of speech, remove identifying
information, transcribe each conversation, and align each word with the concurrent ECoG
signals. We then divided the data into two categories: comprehension (when patients were
listening to speech) and production (when patients were producing speech). This
unconstrained recording paradigm yielded neural activity from multiple electrodes (102–230
electrodes) for dozens of hours (17–37 hours), comprising tens of thousands of words
(79,654–213,473 words) per patient. A comprehensive description of the speech collected,
patient demographics and clinical characteristics see Table S1. Preprocessing procedures can
be found in the Materials and Methods section.
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Figure 1. An ecological, dense-sampling paradigm for modeling neural activity during real-world
conversations. Continuous brain signal monitoring of four ECoG patients during their interactions with
hospital staff, family, and friends provides a unique opportunity to investigate real-world social
communication. Simultaneously recorded verbal interactions are transcribed and segmented into
production (purple) and comprehension (green) components (bottom left). The Whisper model was
employed to process the audio recordings and corresponding transcriptions. For each word, we extracted
“speech embeddings” from Whisper’s encoder network (red) and “language embeddings” from Whisper’s
decoder network (blue) (top left). The embeddings were reduced to 50 dimensions using PCA. Linear
regression predicted neural signals from the speech embeddings (red) and language embeddings (blue)
across tens of thousands of words. To evaluate encoding model performance, we calculated the correlation
between predicted and actual neural signals for left-out test words. This process was repeated for each
electrode and each lag, using a 25 ms sliding window ranging from –2000 to +2000 ms relative to word
onset (top right). Brain coverage across four participants comprising 654 left hemisphere electrodes
(bottom right).

In our dataset, each conversation is unique, allowing patients to express themselves freely
without any intervention from experimenters. To accommodate the complex and multimodal
nature of real-world speech, we employed Whisper, a multimodal speech-to-text model that
can learn to align real-world speech recordings with high-level linguistic meaning with
human-level precision 17. We input the acoustic speech recordings and manually-transcribed
text from our conversations to Whisper. To leverage the multimodal architecture of Whisper,
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we separately extract both “speech embeddings” and “language embeddings” for each word
in every conversation (Fig. 1; Materials and Methods): speech embeddings were extracted
from the encoder network based on continuous speech inputs; language embeddings were
extracted from the decoder network. During the extraction of embeddings, we disconnect the
cross attention in the Whisper model and separate it into a speech encoder stack and a
language decoder stack.

What features of real-world conversations do these speech and language embeddings
encode? To visualize the information encoded in these embeddings, we used t-SNE to project
the multidimensional embeddings (3840-d for speech and 384-d for language, sampled from
each layer of the encoder and decoder) onto two-dimensional manifolds (Fig. 2 & S1). We
found that speech embeddings are clustered according to known acoustic features of
speech, such as phonemes (Fig. 2A), but not lexical information, such as part of speech (PoS;
Fig. 2C). On the other hand, the language embeddings are clustered according to part of
speech (Fig. 2B) and, to a lesser extent, phonemes (Fig. 2D). Similar clustering results were
obtained for t-SNE projections of manner of articulation (MoA) and place of articulation (PoA),
see supplementary Fig. S1A-D. To quantify which features are encoded in these embeddings,
we assessed classification performance at each layer for four different types of features:
phoneme categories (27 classes), place of articulation (PoA, 9 classes), manner of articulation
(MoA, 9 classes), and part of speech (5 classes) 34. The speech embeddings yielded robust
classification performance for all features (Figs. 2E & S1E), with a particularly strong
classification of phonemes at the last layer of the encoder (accuracy = 0.54, chance level =
0.04, 27 classes), PoA (accuracy = 0.48, chance level = 0.11, 9 classes), and MoA (accuracy =
0.63, chance level = 0.11, 9 classes). The final (fourth) layer of the Whisper encoder network
yielded the best classification of phonemes, PoA, and MoA (Fig. S1E), so we extracted
speech embeddings from this layer for further analysis. The language embeddings, on the
other hand, yielded a stronger classification of PoS (accuracy = 0.66, chance level= 0.20, 5
classes). Classification of PoS was highest for the final layers of the Whisper decoder network
(Fig. S1F), so extracted language embeddings for the second-to-last (third) layer, in keeping
with prior work showing that late-intermediate layers of autoregressive language models
provide the best predictions for neural activity 29,31,35. Similar results were obtained for the top
language decoder layer.

Together, these findings provide evidence that Whisper’s speech embeddings implicitly
encode acoustic features of natural speech, while the language embeddings implicitly encode
lexical properties. Note that Whisper was trained end-to-end to predict upcoming words given
the audio as input; the encoder was not explicitly trained to recognize phonemes or manner of
articulation, and similarly, the decoder was not trained to recognize parts of speech. The
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emergent representation of these psycholinguistic features in different architectural
components of the model motivates our use of Whisper’s speech and language embeddings
to model speech- and language-related features of human brain activity.

Figure 2. Representations of phonetic and lexical information in Whisper. (A-D) Speech embeddings
and language embeddings were visualized in a two-dimensional space using t-SNE. Each data point
corresponds to the embedding for either an audio segment (speech embeddings from the encoder
network) or a word token (language embeddings from the decoder network) for a unique word (averaged
across all instances of a given word). Clustering according to phonetic categories is visible in speech
embeddings (A) but far less prominent in language embeddings (B). Clustering according to lexical
information (part of speech) is visible in language embeddings (D) but not in speech embeddings (C). (E)
Classification of phonetic and lexical categories based on speech and language embeddings. We observed
robust classification for phonetic information based on speech embeddings. We also observed robust
classification for parts of speech based on language embeddings.

To assess whether the embeddings extracted from Whisper can capture neural activity during
natural conversations, we constructed two sets of encoding models based on speech
embeddings and language embeddings during both speech production and speech
comprehension. The encoding models estimate a linear mapping between the Whisper
embeddings and neural activity for each word in the training set. Subsequently, we used the
trained encoding models to predict the neural activity for each word at each electrode in
left-out conversations (Fig. 1). A separate encoding model was trained for each electrode at
various time points, ranging from -2000 ms to 2000 ms relative to the word onset (time 0). The
performance of the encoding model was evaluated by calculating the correlation between the
predicted and actual neural signals for the held-out conversations using ten-fold
cross-validation. All analyses were adjusted for multiple comparisons using a non-parametric
procedure to control the family-wise error rate (FWER).
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Figure 3. Speech and language encoding model performance during speech production and
comprehension. Encoding performance (correlation between predicted and actual neural activity) for each
electrode for speech (acoustic) and language (lexical) models during speech comprehension (~50 hours,
289,971 words) and speech production (~50 hours, 230,238 words). The plots illustrate the correlation
values associated with the encoding for each electrode, with the color indicating the highest correlation
value (across lags). (A) Modeling speech production using speech embeddings revealed significant
electrodes in somatomotor areas (SM) and superior temporal gyrus (STG), as well as the inferior frontal
gyrus (IFG; Broca’s area), temporal pole (TP), angular gyrus (AG), and posterior middle temporal gyrus
(pMTG; Wernicke’s area). (B) Employing language embeddings for speech production also highlighted
similar regions but notably fewer electrodes (with lower correlations) in SM and STG and higher correlations
in IFG. (C) Modeling speech comprehension using speech embeddings resulted in significant electrodes in
auditory and language areas, particularly the STG, TP, IFG, and Wernicke’s areas. (D) Similarly, when using
language embeddings for speech comprehension, a comparable pattern emerged with slightly lower
performance in STG and higher in the IFG. Overall, the findings demonstrate specific cortical regions
associated with speech production and comprehension, showcasing the distinct contributions of speech
and language embeddings in decoding neural activity.

Whisper’s speech and language embeddings predicted neural activity with remarkable
accuracy across conversations comprising hundreds of thousands of words, during both
speech production and comprehension, for numerous electrodes in various regions of the
cortical language network (Fig. 3). These brain regions are known to be involved in auditory
speech processing (e.g., superior temporal gyrus; STG), language comprehension and
production (e.g., inferior frontal gyrus, IFG), somatomotor (SM) planning and execution (e.g.,
precentral and postcentral gyrus; preCG, postCG), and high-level semantic cognition (e.g.,
angular gyrus and temporal pole; AG, TP) 36,37. Speech embeddings yielded more significant
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electrodes than language embeddings for both production (274 versus 154, chi-square (1, N =
644) = 49.55, p < 0.001) and comprehension (186 versus 135, chi-square (1, N = 644) = 4.09,
p < 0.05). Remarkably, the predicted signals were strongly correlated with the actual
signals—up to 0.5 Pearson correlation across lags—across hours of left-out speech
segments. Similar results were obtained when using the last layer of the decoder stack or the
unimodal GPT-2 (Fig. S2).

Figure 4. Mixed selectivity for speech and language embeddings during both speech production and
comprehension. (A) Contrast map of electrodes exhibiting significantly higher encoding for speech
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embeddings (red) and significantly higher encoding for language embeddings (blue). Surrounding plots
display encoding performance during speech production for selected individual electrodes across different
brain areas and patients. Models were estimated separately for each lag (relative to word onset at 0 s) and
evaluated by computing the correlation between predicted and actual neural activity. The dashed horizontal
line indicates the statistical threshold (q < 0.01, FDR corrected). The speech encoding model (red) achieved
correlations of up to 0.5 when predicting neural responses to each word over hours of recordings in the
superior temporal gyrus (STG), precentral gyrus (preCG), and postcentral gyrus (postCG). The language
encoding model yielded significant accuracies (correlations up to 0.25) and outperformed the speech
model in IFG and AG. (B) Contrast map of speech embeddings (red) versus language embeddings (blue)
during speech comprehension. Matching the flow of information during conversations, encoding models
accurately predicted neural activity ~500 ms before word onset during speech production and 300 ms after
word onset during speech comprehension.

We could accurately predict speech and language-related neural activity during new
conversations in numerous individual electrodes (Fig. 4). During spontaneous speech
production (Fig. 4A), we observed organized hierarchical processing, where articulatory areas
along the preCG and postCG, as well as STG, better correlated with speech embeddings
(red), while higher-level language areas such as IFG, pMTG, and AG better correlated with
language embeddings (blue). A similar hierarchical organization was evident in speech
comprehension (Fig. 4B): perceptual areas such as STG and somatomotor areas like preCG
and postCG showed a preference for speech embeddings, while higher-level language areas,
including IFG and AG, displayed a preference for language embeddings. Intriguingly, we
observed a pronounced preference for speech information in the TP during speech
production (Figs. 4, S3). Our predictions had a high level of precision, with a correlation
between predicted and actual neural responses ranging from 0.2 to 0.5 across electrodes and
models. We replicated these electrode-level findings at the level of anatomically-defined
regions of interest (averaging encoding performance across electrodes at each ROI; Fig. S3).
Similar results were obtained when using the language embeddings without detaching them
from the encoder network (Fig. S4).  These high correlations were achieved for hundreds of
thousands of words and tens of hours of speech from previously unseen, unique
conversations not used to train the encoding model (Fig. 4).
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Figure 5. Temporal dynamics of speech production and speech comprehension across different
brain areas. Based on tuning preferences for each ROI, we assessed temporal dynamics using the
language model for IFG and the speech model for STG and SM. Colored dots show the lag of the encoding
peak for each electrode per ROI. To determine significance, we performed two-sample permutation tests
between encoding peaks. (A) During speech production, encoding for language embeddings in IFG peaked
significantly before speech embeddings in SM and STG. (B) The reverse pattern was observed during
speech comprehension: encoding performance for language embeddings encoding in IFG peaked
significantly after speech encoding in SM and STG. (C) For speech production, we observed a temporal
pattern of encoding peaks shifting toward word onset within SM, proceeding from dorsal (dSM) to the
middle (mSM) to ventral (vSM). (D) Map showing the distribution of electrodes per ROI.

Evaluating encoding models at each lag relative to word onset allows us to trace the temporal
flow of linguistic information across speech-related ROIs during the production and
comprehension of natural conversations. First, in congruence with the flow of information
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during speech production, language encoding in IFG peaked first around 500 ms before word
onset (M = -480 ms, SD = 284 ms), whereas, in somatomotor areas (SM; comprising preCG
and postCG), the speech model encoding peaked significantly closer to speech onset (M =
-305 ms, SD = 391 ms, t(80) =1.95, p < 0.05; Fig. 5A). Interestingly, the temporal dynamics of
speech encoding in the SM and auditory speech areas along the STG were aligned. This may
indicate an efferent copy between motor and auditory areas during speech production 38–40. A
reverse dynamic was observed during speech comprehension. During speech
comprehension, speech areas along the STG peaked shortly after word-onset (M = 55 ms, SD
= 189 ms), while language model encoding in IFG peaked significantly later, around 300 ms
after word onset (M = 292ms, SD = 73ms, t(60) = -6.35, p < 0.001; Figs. 5B, S5). During
speech comprehension, encoding in motor areas exhibited higher variability and was less
interpretable, as shown in Fig. 5B. Finally, we found an unexpected temporal pattern of
speech encoding during speech production: peak encoding performance proceeded from
dorsal SM to middle SM and finally to ventral SM prior to word articulation (Fig. 5C).
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Figure 6. Mixed selectivity for speech production and comprehension. (A) Contrast map of the
electrodes exhibiting significantly higher encoding during speech production (purple) and significantly
higher encoding during speech comprehension (green) using encoding models based on speech
embeddings. Surrounding plots display encoding performance during speech production and speech
comprehension for selected electrodes across different brain areas and patients. Models were estimated
separately for each lag (relative to word onset at 0 s) and evaluated by computing the correlation between
predicted and actual neural activity. The dashed horizontal line indicates the statistical threshold (q < 0.01,
FDR corrected). STG, IFG, and AG exhibited higher encoding during speech comprehension (green). The
precentral gyrus (preCG), postcentral gyrus (postCG), medial temporal gyrus (MTG), and temporal pole
exhibited higher encoding during speech production (purple). (B) Contrast map of encoding performance
during speech production (purple) versus speech comprehension (green) based on language embeddings.
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Lastly, we mapped the electrode-wise selectivity for production versus comprehension across
the cortical language network using embeddings for either speech embeddings (Figs. 6A, S6)
or language embeddings (Figs. 6B, S6). In comparing production versus comprehension, we
observed a different hierarchical organization, where speech areas in STG and language areas
in anterior and medial IFG yielded higher encoding performance during speech
comprehension (Fig. 6AB, green), while posterior IFG and SM (preCG and postCG), as well as
the temporal pole (TP), yielded higher encoding performance during speech production (Fig.
6AB, purple). Similar results were seen for language embeddings (Fig. 6B). Interestingly, these
results suggest a gradient from speech comprehension at the anterior part of IFG to speech
production at posterior IFG toward SM areas. We found that SM areas play a surprisingly
large role in real-life unconstrained conversations in terms of both speech and language
features.

Discussion

In this study we modeled neural activity in humans as they freely speak to and listen to others
in interactive, real-world conversations. We introduce a dense-sampling paradigm for
modeling the neural machinery driving everyday conversations in a way that embraces their
complex and contextual nature. For the first time, we recorded one hundred
hours—comprising half a million words—of spontaneous open-ended conversations
concurrently with high spatiotemporal resolution neural activity using intracranial recordings.
The unprecedented size of this dataset provides us with a detailed look at the richness of
human conversations as they unfold in real-world contexts. Using speech and language
embeddings from a multimodal speech-to-text model, we could predict neural activity with
remarkable precision in both lower-level perceptual and motor, as well as higher-level
language areas, across hundreds of thousands of words in free conversations. The model’s
generalization performance across many hours of everyday conversations implies that we can
now predict neural responses in language areas for most conversations without simplifying or
controlling speech.

Our encoding models revealed a distributed processing hierarchy in which sensory areas
along the superior temporal gyrus (STG) and somatomotor areas (SM) along the precentral
gyrus (preCG) were better modeled by speech embeddings (red, Fig. 3), while higher-order
language areas in the inferior frontal gyrus (IFG), as well as posterior temporal and parietal
cortex, were better modeled by language embeddings (blue, Fig. 3). This was true for both
speech production (Fig. 3A) and speech comprehension (Fig. 3B). These results recapitulate
the known hierarchy of natural language processing 41,42. At the same time, electrode-wise
selectivity for speech or linguistic information was mixed across most brain areas: higher-level
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linguistic information was encoded in speech perception and speech articulation areas (Fig. 4,
individual electrodes, and Figs. S2, S3 & S6 for ROI level analysis) and speech information
was encoded in higher-order language areas (Fig. 4, individual electrodes, and Figs. S2, S3 &
S6 for ROI level analysis). This mixed selectivity is common in both biological and artificial
learning systems that are “directly” fit to the complex structure of their inputs 13, and may
support the high-dimensional neural representational space needed to encode the structure
of natural language 43. Overall, these results are aligned with the known interaction between
speech level and semantic level processing, where linguistic prediction can facilitate speech
processing in auditory areas, and acoustic information can facilitate the processing of words
in language areas 44–48.

Most of our knowledge about speech production relies on studies in which speakers are
asked to articulate a fixed set of predetermined sentences 49,50. This study provides insights
into the neural mechanisms underlying the production and articulation of spontaneous
thoughts during open-ended unconstrained conversations, a cognitive process that has so far
remained enigmatic. Generally, motor areas along the preCG are more central for speech
production (purple, Figs. 6, S6). However, many electrodes exhibit mixed selectivity for
speech production and speech comprehension. For example, comprehension-related areas in
the STG encode speech (and higher-level linguistic) information before word onset during
speech production 51,52. Conversely, we could predict the neural activity for perceived speech
even in motor areas associated with speech production (Fig. 3). This indicates that speech
production and comprehension may rely on a shared neural system 53–55. This was also true
for high-order language areas.

The high spatiotemporal resolution of our neural recordings allows us to map the temporal
dynamics of speech and language encoding across cortical areas during everyday
conversations. In IFG, our encoding models accurately predicted neural activity for each word
~500 ms before word onset during speech production and ~300 ms after word onset during
speech perception. The temporal encoding sequence across brain areas was reversed when
speaking versus listening. For example, during speech production, we observed that peak
language encoding in IFG preceded peak speech encoding in somatomotor areas (SM). In
contrast, during speech comprehension, peak speech encoding along STG preceded peak
language encoding in the IFG. Notably, during speech production, we found strong alignment
to speech embeddings in both articulation areas in SM and perceptual areas in STG,
suggesting a potential coupling between motor and perceptual processes during speech
production 39,55.

How should we interpret the relationship between the internal representations of Whisper and
the human brain when processing human speech? There are two potential options to

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 27, 2023. ; https://doi.org/10.1101/2023.06.26.546557doi: bioRxiv preprint 

https://paperpile.com/c/bFQUub/9bYO
https://paperpile.com/c/bFQUub/eR0O
https://paperpile.com/c/bFQUub/2tP4+xUI5+Umr5+2KVd+5tV9
https://paperpile.com/c/bFQUub/0J4M+mUOb
https://paperpile.com/c/bFQUub/fQBD+9UWN
https://paperpile.com/c/bFQUub/eYPk+kTU8+fHEc
https://paperpile.com/c/bFQUub/wE08+fHEc
https://doi.org/10.1101/2023.06.26.546557
http://creativecommons.org/licenses/by-nc-nd/4.0/


Deep speech-to-text models capture the neural basis of spontaneous speech in
everyday conversations

consider. The first option is that our encoding model effectively learns the transformation
between two distinct codes for processing natural language. This is significant because it
positions deep language models as a powerful computational tool to study and predict how
the brain processes everyday conversations. They enable us to map out brain areas sensitive
to speech and linguistic information during both speaking and listening across hours of
context-rich natural language. This breakthrough was instrumental in modeling our unique,
fully unconstrained conversational dataset.

The second interpretation is that there are shared computational principles for natural
language processing between deep language models and the human brain. This is a stronger
claim that suggests that deep learning can serve as a neurally-inspired cognitive model for
human brain function. In particular, these models have leveled a challenge against traditional
rule-based symbolic linguistic models of language representation and processing 16. Some
arguments support the stronger theoretical claim. First, our encoding models established that
a simple linear mapping between the internal neural activity in Whisper and the human brain
yields remarkably high prediction performance. This suggests the two internal representations
may be more similar than initially anticipated. Second, recent research has discovered shared
computational principles between unimodal deep language models (such as GPT2 or BERT)
and the human brain during comprehension of previously-recorded spoken stories 29,35,56. Our
investigation goes beyond these previous studies by introducing a multimodal
speech-to-language model and examining both comprehension and production of
spontaneous speech. Our findings support linguistic theories that highlight the role of
usage-based statistical learning in language acquisition and downplay the importance of
classical rule-based symbolic linguistic models.
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Materials and Methods

Preprocessing the speech recordings
We developed a semi-automated pipeline for preprocessing the dataset. The pipeline
can be broken down into four steps:

1. De-identifying speech: All conversations in a patient’s room were recorded using a
high-quality microphone and stored locally. These audio recordings contain sensitive
information about the patient’s medical history and private life. To comply with HIPAA’s
data privacy and security provisions for safeguarding medical information, any
identifiable information (e.g., names of people and places) were censored. Given the
sensitivity of this phase, we employed a research specialist dedicated to the manual
de-identification of recordings for each patient.

2. Transcribing speech: Although many speech-to-text transcription tools have been
developed, extracting text from 24/7 noisy, multi-speaker audio recordings is
challenging. To achieve the transcription quality necessary for our preliminary analyses,
we used a human-in-the-loop annotation pipeline integrated with human transcribers
from MTurk.

3. Aligning text to speech: Text transcripts (i.e., sequences of words) must be aligned
with the audio recordings at the individual word level to provide an accurate time stamp
for the production of each word. We used the Penn Forced Aligner 57, which yields
timestamps with 20-millisecond precision, to generate rough word onsets and offsets.
We further improved this automated forced alignment by manually verifying and
adjusting each word’s onset and offset times.

4. Aligning speech to neural activity: To provide a precise mapping between neural
activity and the conversational transcripts, we engineered one of the ECoG amplifiers
to record the output of the microphones directly. The concurrent recordings of the
audio and neural signals allowed us to align both signals at about 20-millisecond
precision.

Speech embedding extraction
To prepare audio recordings for subsequent processing by the speech model, we
downsampled the audio recordings to 16 kHz. Since Whisper is trained on 30 s audio
segments, audio recordings were fed to the model using a sliding window of 30 s. The
Whisper encoder’s internal representations are not aligned to discrete word tokens (as
in the decoder); instead, the encoder embeddings correspond to temporal segments of
the original audio input. To account for this, we used an approximation to extract
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embeddings for each word. To understand this approach, it is necessary to give an
overview of the model architecture: In the first step, each 30 s audio segment is
transformed to a spectrogram of size 3000 * 80, where 3000 corresponds to the
number of hidden states and 80 to the number of mel features. Each hidden state
represents a temporal segment of 25 ms of the original audio input, with a stride of 10
ms. The spectrogram is then passed through two convolutional layers, resulting in 1500
hidden states of 384 embedding dimensions each. As a result of the convolutional
operations, each hidden state represents a temporal segment of 62.5 ms of the original
audio input, with a stride of 20 ms. The mean word duration in our dataset was around
235 ms (M = 235 ms, SD = 169 ms). To extract embeddings on the word level, we
concatenated the last ten hidden states, corresponding to 232.5 ms of the audio input.
To temporally align the concatenated ’word embedding’ to the word onset, we defined
the endpoint of each sliding window to the word’s onset plus 232.5 ms. Thus, the
extracted ’word embedding’ does not contain any information prior to word onset after
the spectrogram and convolution layers. Since our classification analysis indicated that
embeddings extracted from the fourth encoder layer have the most structured
representation of phonetic categories compared to embeddings extracted from other
encoder layers (Fig. S1E), encoding analyses were performed using embeddings from
the fourth encoder layer.

Language embedding extraction
For each word, text transcripts corresponding to the 30 s context window were
tokenized and given as contextual input to the decoder (M = 70 words in, SD = 28
words in a 30 s window). We extracted the embedding corresponding to the last word
in the sequence. In line with previous results indicating that late-intermediate layers of
language models show the best encoding performance for neural data 58, we extracted
embeddings from the third decoder layer.

Visualization of embedding space
To explore the structure of information represented in speech and language
embeddings, we used t-SNE to project the high-dimensional embedding spaces down
to two-dimensional manifolds for visualization. This projection was computed
separately for the speech embeddings (from the encoder network) and the language
embeddings (from the decoder network). Each data point in the scatter plots (Fig. 2)
corresponds to a speech or language embedding for a unique word. For each unique
word (n = 13,347) we averaged the embeddings across instances throughout the
transcript to get one embedding per word. We replicated the analysis using the first
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instance or random instances of each word and obtained similar results. We then
applied t-SNE to the averaged embeddings with perplexity = 50. To better understand
the structure of this two-dimensional space, we colored the data points (corresponding
to word embeddings) according to several speech and language features: phonemes,
place of articulation (PoA), manner of articulation (MoA), and part of speech (PoS).
Phonemes, PoA, and MoA capture acoustic and articulatory features of speech,
whereas PoS captures lexical categories. We obtained phoneme classes from the
Carnegie Mellon Pronouncing Dictionary 59, which provides 39 classes (37 in our
dataset). We further classified the phonemes based on their place of articulation (total 9
classes, 9 in our dataset) and manner of articulation (total 9 classes, 9 in our dataset)
according to the general american english consonants of the International Phonetic
Alphabet. Because each word consists of multiple phonemes, we took the first
phoneme for each word. We replicated the following visualizations and classification
analyses for the second, third, and fourth phonemes of each word separately and
obtained similar results. To extract part of speech information, we used the part of the
speech tagging process available in the NLTK python package (total 12 classes, 11 in
our dataset). We removed classes with less than 100 occurrences (less than 1% of the
data, resulting in 27 phoneme classes, 9 PoA classes, 9 MoA classes, and 5 PoS
classes).

Classification of speech and linguistic features
To quantify the information encoded in the embeddings, we trained multinomial logistic
regression classifiers (using the L2 penalty and default C = 1.0 in scikit-learn) to predict
phonetic (phonemes, PoA, MoA) and lexical categories (PoS) separately for both
speech and language embeddings. We used a ten-fold cross-validation procedure with
temporally-contiguous training/test folds to train and evaluate classifier performance.
On each fold of the cross-validation procedure, embeddings were standardized and
reduced to 50 dimensions using PCA. To establish a baseline for comparing classifier
accuracy, we trained dummy classifiers that learned to predict the most frequent class.
Since the distribution of classes in our dataset was unbalanced, we used the balanced
accuracy metric to evaluate classification performance 60. Balanced accuracy is
calculated as the proportion of correct predictions per class averaged across all
classes. This results in a value between 0 and 1, with higher values indicating better
classification performance. For instance, a random classifier that always predicts the
most frequent class will result in a balanced accuracy of 1 divided by the number of
classes, which is at the chance level. Essentially, the balanced accuracy metric
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assesses how well the classifier can differentiate between different classes while
minimizing misclassifications due to unbalanced data.

Preprocessing the ECoG recordings
The ECoG preprocessing pipeline was intended to mitigate artifacts due to movement,
faulty electrodes, line noise, abnormal physiological signals (e.g., epileptic discharges),
eye blinks, and cardiac activity 61. We built a semi-automated analysis pipeline to
identify and remove corrupted data segments (e.g., due to epileptic seizures or loose
wires) and mitigate other noise sources using FFT, ICA, and de-spiking methods 62. We
then bandpassed the neural signals using a broadband (75–200 Hz) filter and
computed the power envelope, a proxy for each electrode’s average local neural firing
rate 63. The signal was z-scored and smoothed with a 50 ms Hamming kernel. 3000
samples were trimmed at each end of the signal to avoid edge effects. Signal
preprocessing was performed using custom preprocessing scripts in MATLAB 2019a
(MathWorks).

Electrode-wise encoding models
To map the Whisper embeddings onto the neural activity, we used linear regression to
estimate encoding models for each electrode and lag relative to word onset. To
construct the outcome variable, we averaged the neural signal across a 200 ms
window at each lag (at 25 ms increments) for each electrode across all words. Using a
ten-fold cross-validation procedure, we trained two sets of encoding models to predict
the wordy-by-word neural signal magnitude based on either speech or language
embeddings. Within each training fold, we standardized the embeddings and used
PCA to reduce the embeddings to 50 dimensions. We then estimated the regression
weights using ordinary least-squares multiple linear regression from the training set and
applied those weights to predict the neural responses for the test set. To assess model
performance, we calculated the Pearson correlation between the predicted neural
signal and the actual neural signal for each held-out test fold. The correlations were
average across the ten test folds. This procedure was repeated at 161 lags from -2,000
to 2,000 ms in 25-ms increments relative to word onset; the same predictor
embeddings were used at each lag.

Electrode selection
To identify significant electrodes, we used a randomization procedure. At each iteration,
we performed a random shift in the assigned embeddings to each predicted signal,
thus disconnecting the relationship between the words and the brain signal while
preserving the order between the different embeddings. The random shift was

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 27, 2023. ; https://doi.org/10.1101/2023.06.26.546557doi: bioRxiv preprint 

https://paperpile.com/c/bFQUub/lYqW
https://paperpile.com/c/bFQUub/cupF
https://paperpile.com/c/bFQUub/pZWb
https://doi.org/10.1101/2023.06.26.546557
http://creativecommons.org/licenses/by-nc-nd/4.0/


Deep speech-to-text models capture the neural basis of spontaneous speech in
everyday conversations

restricted to avoid rolling the assignment inside the context window. We then
performed the entire encoding procedure for each electrode on the mismatching
words. We repeated this process 1,000 times. After each iteration, the encoding
model’s score was calculated based on the maximal value minus the minimal value
across all 161 lags for each electrode. For each patient, we then took the maximum
value for each permutation across all electrodes. This resulted in a distribution of 1,000
maximum values for each patient, which was used to determine the significance of all
electrodes. For each electrode, a p-value was computed as the percentile of the
original maximum-minimum values of the encoding model across all lags from the null
distribution of 1,000 similarly calculated values. Performing a significance test using
this randomization procedure evaluates the null hypothesis that there is no systematic
relationship between the brain signal and the corresponding word embedding. This
procedure yielded a family-wise error rate corrected p-value for each electrode,
correcting for the multiple lags 64. Electrodes with p-values less than 0.01 were
considered significant.

Differences in the overall magnitude of encoding performance
To identify electrodes with significant differences in the magnitude of encoding
performance for speech and language embeddings, we used the same randomization
procedure described in the electrode selection section. We only statistically evaluated
differences in model performance for electrodes with significant encoding performance
for at least one model (see “Electrode selection” above). For each permutation, we
computed the difference in model performance by subtracting the two maximal
encoding performance (correlation) values for each electrode across all 161 lags. This
resulted in a distribution of 1,000 difference values between the encoding performance
for speech embeddings and language embeddings at each electrode. For each
electrode, a p-value was computed as the percentile of the non-permuted maximum
difference values between encoding performance for speech and language
embeddings across all lags from the null distribution of 1,000 difference values. To
correct for testing across multiple electrodes, we used FDR correction 65. Electrodes
with q-values less than 0.005 (significance of 0.01 standardized for the two-sided test)
were considered significant differences in model performance. We used the same
procedure to identify electrodes that showed a significant difference in the magnitude
of encoding performance between speech production and comprehension.

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 27, 2023. ; https://doi.org/10.1101/2023.06.26.546557doi: bioRxiv preprint 

https://paperpile.com/c/bFQUub/HjUM
https://paperpile.com/c/bFQUub/yL2T
https://doi.org/10.1101/2023.06.26.546557
http://creativecommons.org/licenses/by-nc-nd/4.0/


Deep speech-to-text models capture the neural basis of spontaneous speech in
everyday conversations

Differences in lag-by-lag encoding performance
To test for significant differences in electrode-wise encoding performance between the
encoding performance for the speech and language embeddings for each lag, we used
a paired-sample permutation procedure: in each permutation, we randomly shuffled the
labels of all observations for both models (we obtained a correlation coefficient for
each fold during a 10-fold validation procedure, thus collecting 10 observations per
electrode for each model). Then, we computed the difference between encoding
performance for speech and language embeddings. We compute the exact null
distribution of different values for the 10 observations (210 = 1,024 permutations). For
each lag, a p-value was computed as the percentile of the non-permuted difference
relative to the null distribution of 1,024 difference values. To correct for multiple lags,
we used the FDR correction procedure 65. Lags with q-values less than 0.025
(significance of 0.05 for the two-sided test) were considered to be significant.

We used a similar procedure to test for significant differences in electrode-wise
encoding performance for the speech and language embeddings averaged across
electrodes in different ROIs: we randomly shuffled the labels of all observations (10 × n,
where 10 is the number of folds and n corresponds to the number of electrodes in the
ROI) and computed the difference between mean encoding performance for the
speech embeddings and language embeddings. This process was repeated 10,000
times, resulting in a distribution of 10,000 difference values. For each lag, a p-value
was computed as the percentile of the non-permuted difference relative to the null
distribution, and FDR correction was applied to correct for multiple lags. Lags with
q-values less than 0.025 (significance of 0.05 for the two-sided test) were considered
to be statistically significant.

Differences in the temporal lag of peak encoding performance
To test for significant differences in the temporal dynamics of encoding performance
between ROIs, we performed independent-samples t-tests. First, we hypothesized that
for production, peak encoding in electrodes in IFG would occur significantly earlier than
in electrodes in somatomotor (SM) and auditory (STG) areas. To test this hypothesis,
we performed an independent-samples t-test (one-sided) on the lags at peak encoding
for electrodes in the given ROIs. Second, we hypothesized that for comprehension,
peak encoding in electrodes in IFG would occur significantly later than peak encoding
in electrodes in SM and STG. We performed an independent-samples t-test (one-sided)
on the lags at peak encoding for electrodes in the given ROIs to test this hypothesis. To
test whether the peak encoding performance for electrodes in a given ROI occurred
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significantly before or after word onset, we performed one-sample t-tests (two-sided)
on the lags at peak encoding for electrodes in the given ROI against lag 0 (word onset).

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 27, 2023. ; https://doi.org/10.1101/2023.06.26.546557doi: bioRxiv preprint 

https://doi.org/10.1101/2023.06.26.546557
http://creativecommons.org/licenses/by-nc-nd/4.0/


Deep speech-to-text models capture the neural basis of spontaneous speech in
everyday conversations

Supplementary Information

Deep speech-to-text models capture the neural basis of spontaneous speech in
everyday conversations

Ariel Goldstein1,2, Haocheng Wang3*, Leonard Niekerken3,4*, Zaid Zada3*, Bobbi Aubrey3*, Tom Sheffer2*,
Samuel A. Nastase3*, Harshvardhan Gazula3,5, Mariano Schain2, Aditi Singh3, Aditi Rao3, Gina Choe3,
Catherine Kim3, Werner Doyle6, Daniel Friedman6, Sasha Devore6, Patricia Dugan6, Avinatan Hassidim2,
Michael Brenner2,7, Yossi Matias2, Orrin Devinsky6, Adeen Flinker6, Uri Hasson3

1Department of Cognitive and Brain Sciences and Business School, Hebrew University, Jerusalem, Israel
2Google Research
3Department of Psychology and the Princeton Neuroscience Institute, Princeton University, Princeton, NJ
4Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University,
Maastricht, The Netherlands
5Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard
Medical School, Boston, MA
6New York University School of Medicine, New York, NY
7School of Engineering and Applied Science, Harvard University, Boston, MA
*Equal contribution
☩Corresponding author: ariel.y.goldstein@gmail.com

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 27, 2023. ; https://doi.org/10.1101/2023.06.26.546557doi: bioRxiv preprint 

https://doi.org/10.1101/2023.06.26.546557
http://creativecommons.org/licenses/by-nc-nd/4.0/


Deep speech-to-text models capture the neural basis of spontaneous speech in
everyday conversations

Supp. Fig. 1. Representations of phonetic and lexical information in Whisper. (A-D)
Visualization of speech embeddings and language embeddings in a two-dimensional space
estimated using t-SNE. Each data point corresponds to the embedding for either an audio segment
(speech model) or a word token (language model) for a unique word (averaged across all instances
of one word). Clustering according to phonetic categories (manner of articulation, MoA; and place
of articulation, PoA) is visible in speech embeddings (A, C) but not in language embeddings (B, D).
(E, F) Classification of phonetic information (phoneme, MoA, PoA) and lexical information (PoS)
based on embeddings taken from the different layers of the whisper encoder and decoder network.
The last layer of speech embeddings (speech 4) shows best classification accuracy for phonetic
information and relatively low classification accuracy for lexical information (E). The third layer of
language embeddings (language 3) show best classification accuracy for lexical information and
relatively low classification accuracy for phonetic information (F).
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Supp. Fig. 2. Comparing language embeddings across layers and models. We compared
encoding performance for language embeddings from Whisper decoder layer 3 and 4 to encoding
performance for language embeddings from GPT-2 layer 8. Encoding performance is shown for
significant electrodes during speech production and comprehension, corrected for multiple
comparisons. The color indicates the maximum correlation value across lags per electrode.
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Supp. Fig. 3. Average speech and language encoding for ROIs. Electrode-wise encoding
performance values were averaged per ROI for speech (red) and language (blue) embeddings. For
each ROI, encoding performance was averaged across electrodes that showed a significant
difference in maximum encoding performance (across lags) between speech and language
embeddings (number of electrodes in parentheses). The shaded color represents the standard error.
Asterisks indicate a lag-wise significant difference in ROI-wise encoding performance between
speech and language embeddings (q < 0.01, FDR corrected).
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Supp. Fig. 4. Average encoding for the full Whisper model. Comparing electrode-wise encoding
performance averaged per ROI using speech embeddings (red), language embeddings (blue), and
“full” model embeddings (green). Full model embeddings were extracted from layer 3 of the Whisper
decoder network while keeping the connection to the encoder network intact. The full model,
therefore, includes both speech and language information.
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Supp. Fig. 5. Temporal dynamics of speech production and speech comprehension across
different ROIs. The best-performing model was selected for each ROI to assess lags. Colored dots
show the encoding peak for each electrode per ROI. To assess whether the peak occurred
significantly before or after word onset, we performed a one-sample t-test comparing the sample
mean of encoding peaks per ROI against 0. We show that for speech production the encoding peak
occurs before word onset in all ROIs (AG (M = -600 ms, SD = 196 ms, t(3) = -5.3, p < 0.05), IFG (M
= -480 ms, SD = 278 ms, t(22) = -8.08, p < 0.001), pMTG (M = -395 ms, SD = 114 ms, t(4) =-6.9, p <
0.005), STG (M = -250 ms, SD = 301 ms, t(26) = -4.24, p < 0.001), TP (M = -264 ms, SD = 150 ms,
t(26) = -9.11, p < 0.001), postCG (M = -199 ms, SD = 383 ms, t(29) = -2.79, p < 0.01), preCG (M =
-414ms, SD = 362 ms, t(28) = -6.06, p < 0.001). For speech comprehension, encoding peaked after
word onset in high-level language areas (AG (M = 268 ms, SD = 186 ms, t(7) = 3.81, p < 0.01),
pMTG (M = 271 ms, SD = 72 ms, t(28) = 21.4, p < 0.005), IFG (M = 292 ms, SD = 72 ms, t(28) =
21.4, p < 0.001). In sensory areas, STG (M = 54 ms, SD = 186 ms, t(32) = 1.65, p > 0.05) and
postCG (M = -38 ms, SD = 139 ms, t(10) = -0.87, p > 0.05) the peak occurred around word onset. In
preCG (M = -603ms, SD = 624ms, t(18) = -4.1, p < 0.001) and TP (M =-355ms, SD = 503ms, t(12) =
-2.44, p < 0.05), the peak occurred before word onset.
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Supp. Fig. 6. Average ROI-level encoding for speech production and comprehension.
Electrode-wise encoding performance values were averaged per ROI for production (purple) and
comprehension (green). For each ROI, encoding performance was averaged across electrodes that
showed a significant difference in maximum encoding performance (across lags) between
production and comprehension (number of electrodes in parentheses). The shaded color represents
the standard error. Asterisks indicate a lag-wise significant difference in ROI-wise encoding
performance between production and comprehension (q < 0.01, FDR corrected).
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Participant 1 2 3 4

Age 53 26 48 24

Sex F M F M

Number of electrodes
implanted

104 125 255 192

Hours of speech
recorded

17 37 17 29

Number of words
recorded

79654 213473 117800 109282

Number of
comprehension words

47642 109967 71754 60608

Number of production
words

32012 103506 46046 48674

Neuropsychological
testing scores

VCI: 105
POI: 107
PSI: 120
WMI: 102

VCI: 89
POI: 75
PSI: 65
WMI: 74

VCI: 107
POI: 104
PSI: 111
WMI: 114

VCI: 145
POI: 96
PSI: 86
WMI: 95

Pathology/epilepsy
type/seizure focus

posterior
temporal lobe
(neocortical)
epilepsy.
IEEG results
were
consistent
with a seizure
focus
adjacent to or
overlying the
known
posterior
temporal
cortical lesion

left anteromedial
temporal lobe
epilepsy

Right
anteromedial
temporal lobe
epilepsy. ICEEG
localized ictal
onsets to the
right temporal
pole and right
hippocampus

Focal epilepsy
arising from the left
hemisphere with a
broad focus
involving the left
temporal neocortex
(superior, middle,
inferior temporal
gyri) left frontal
operculum, inferior
postcentral gyrus,
insula

Implant Left grid,
strips, and
depth

Left grid, strips,
and depth

Bilateral strips
and depths, and
a left grid

Left grid, strips, and
depth

Supp. Table 1. Patient demographics and clinical characteristics.
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