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Abstract 

Narrative comprehension is inherently context-sensitive, yet the brain and cognitive 

mechanisms by which brief contextual priming shapes story interpretation remain unclear. Using 

hidden Markov modeling (HMM) of fMRI data, we identified dynamic brain states as 

participants listened to an ambiguous spoken story under two distinct narrative contexts (affair 

vs. paranoia). We uncovered both context-invariant states—engaging auditory, language, and 

default mode networks—and context-specific states characterized by differential recruitment of 

control, salience, and visual networks. Narrative context selectively modulated the influence of 

character speech and linguistic features on brain state expression, with the central character’s 

speech enhancing activation in shared states but suppressing activation in context-specific ones. 

Independent behavioral analyses revealed parallel context-dependent effects, with character-

driven features exerting strong, selectively modulated influences on participants’ judgments of 

narrative evidence. These findings demonstrate that brief narrative priming actively reshapes 

brain state dynamics and feature sensitivity during story comprehension, revealing how context 

guides moment-by-moment interpretive processing in naturalistic settings. 

 

Keywords: narrative comprehension, context modulation, brain state dynamics, hidden Markov 

models, Bayesian mixed-effects modeling, naturalistic paradigm, fMRI 

 

Introduction 

Narrative comprehension involves complex interactions among prior knowledge, 

immediate contextual expectations, and the content (Botch & Finn, 2024; Mar & Oatley, 2008; 
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Nastase et al., 2021; Willems et al., 2020). Recent neuroimaging research demonstrates 

significant variability in how individuals process identical narrative stimuli, primarily driven by 

stable personal traits such as empathy, political beliefs, and cognitive abilities. This variability 

results in distinct patterns of brain activity and synchronization (Coderre & Cohn, 2023; de Bruin 

et al., 2023; Johns et al., 2018; Nijhof & Willems, 2015). In addition to these stable individual 

differences, transient manipulations of expectations or interpretation profoundly impact how 

narrative content is processed, highlighting the brain's sensitivity to context (Yeshurun et al., 

2017). 

Research in psychology and linguistics highlights the crucial role of context in 

understanding narratives. Contextual cues, such as background knowledge or primed 

information, help people construct coherent mental representations, improve comprehension, and 

enhance recall of narrative details (Bransford & Johnson, 1972; van Kesteren et al., 2013; Zwaan 

& Radvansky, 1998). Neuroimaging studies further show that naturalistic narratives (e.g., 

audiostories or movies), which unfold over time, recruit default mode network regions that are 

typically less engaged by highly controlled lab stimuli that are shorter and decontextualized 

(Baldassano et al., 2017; Ben-Yakov et al., 2012; Geerligs et al., 2022; Lerner et al., 2011; 

Yeshurun et al., 2021). These longer narratives allow context to accumulate gradually, shaping 

interpretation as the story progresses and enabling the construction of shared mental models 

across listeners.  

When individuals receive similar contextual information, whether through common prior 

knowledge or priming, their cognitive and emotional responses tend to align, producing 

synchronized activity across brains (de Bruin et al., 2023; Lahnakoski et al., 2014; Nguyen et al., 

2019). Conversely, when people are primed differently or bring distinct prior experiences to the 

same narrative, they may interpret it in diverging ways, resulting in idiosyncratic patterns of 

brain activity (Jacoby & Fedorenko, 2020; Yeshurun et al., 2017). These interpretive processes 

rely on integrating incoming information with existing mental models and are thought to emerge 

from coordinated activity across multiple large-scale brain networks, rather than being localized 

to any single region (Barrett, 2022; McIntosh, 2004; Song et al., 2023). 

Narrative comprehension relies on relatively stable cognitive frameworks, such as 

schemas or prior knowledge about story structure (Mar, 2011). Still, it can also be flexibly 

shaped by short-term contextual manipulations, such as priming just before the narrative begins. 
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These immediate contextual cues influence how listeners engage with incoming narrative content 

by biasing expectations and interpretive stance from the outset. The mechanisms by which such 

external contextual priming interacts with the brain’s ongoing maintenance of context remain 

poorly understood. In this study, we examine how the integration of narrative input with initial 

contextual priming is reflected in dynamic patterns of brain activity, using the concept of “brain 

states.” Brain states refer to recurring patterns of coordinated activity across distributed brain 

regions (Liu et al., 2025; Song et al., 2021), analogous to distinct musical motifs formed by 

different instruments in an orchestra. By identifying and characterizing these patterns, we can 

assess the temporal dynamics of brain activity during narrative processing and how they differ 

across primed context conditions (Shine et al., 2019; Vidaurre et al., 2017).  

Similarly, a critical gap remains in understanding the brain mechanisms by which 

contextual priming interacts with specific narrative features, such as character identity and other 

linguistic structures. Character identity is conveyed and reinforced during narrative processing 

through character speech, particularly when direct speech is attributed to specific characters. 

These attributions fundamentally shape comprehension by guiding attention, emotional 

engagement, and social inference (Gerrig, 1993; Jacoby & Fedorenko, 2020; Mar & Oatley, 

2008). Psycholinguistic evidence consistently underscores the central role of character speech in 

maintaining narrative coherence, supporting mental simulation, and enabling theory-of-mind 

reasoning (Nieuwland & Van Berkum, 2006; Zwaan & Radvansky, 1998). Thus, character 

speech serves as a theoretically meaningful and empirically tractable feature for investigating 

how contextual priming influences narrative processing. 

To investigate how narrative context shapes brain state dynamics during story 

comprehension, we used a naturalistic fMRI paradigm in which two participant groups listened 

to the same story but were primed differently beforehand (Yeshurun et al., 2017). We applied 

hidden Markov models (HMMs) to identify recurrent brain states, defined as temporally 

evolving patterns of network-level activity, across the full duration of story listening (Quinn et 

al., 2018; Shine et al., 2019; Taghia et al., 2018; Vidaurre et al., 2017). We hypothesized that 

narrative comprehension involves both stable primary states that track core story structure and 

flexible secondary states that vary with contextual integration demands, particularly in networks 

involved in attention, visual processing, and cognitive control (Baldassano et al., 2017; Hasson et 

al., 2015). Building on prior work showing brain sensitivity to character-level features 
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(Alderson-Day et al., 2020; Jacoby & Fedorenko, 2020; Yarkoni et al., 2008), we further 

predicted that brain state dynamics would differ based on speaker identity.  

We included a complementary behavioral experiment to better understand how primed 

context influences moment-to-moment interpretation. Our goal was to capture when listeners 

subjectively recognized elements of the story as aligning with their assigned context. Participants 

received the same context instructions and listened to the same story as those in the fMRI study. 

They were asked to press a key whenever they perceived information consistent with their 

contextual framing. These responses provide a time-resolved behavioral index of interpretive 

alignment, offering an external marker of how context interacts with narrative features over time.  

 

Methods 

fMRI dataset 

We utilized the “prettymouth” dataset (Figure 1) (Yeshurun et al., 2017), which includes 

40 participants drawn from the Narratives data collection (Nastase et al., 2021). Participants were 

divided into two groups (initially N = 20 per group), with both groups exposed to an adapted 

version of J. D. Salinger's short story, "Pretty Mouth and Green My Eyes." The adapted version 

was shorter than the original and included several sentences not present in the original text. A 

professional actor provided the narration, resulting in a recording of 11 minutes and 32 seconds. 

Functional MRI data were acquired with a repetition time (TR) of 1.5 seconds. The story was 

preceded by 18 seconds of neutral music and 3 seconds of silence, followed by an additional 15 

seconds. These segments of music and silence were excluded from all analyses. 

The narrative describes a phone conversation between two friends, Arthur and Lee. 

Arthur, who has just returned home from a party after losing track of his wife Joanie, calls Lee to 

express his concerns about her whereabouts. Lee is at home with a woman beside him, whose 

identity remains ambiguous—she may or may not be Joanie. Before listening to the story, each 

participant group received one of two different contextual prompts: one group was informed that 

Arthur was paranoid and his suspicions were unfounded (“paranoia” context), while the other 

group was told that the woman was indeed Joanie, Arthur’s wife, and that Lee and Joanie had 

been involved in an ongoing affair for over a year (“affair” context). Yeshurun et al. (2017) and 

Nastase et al. (2021) describe the experimental paradigm and fMRI data acquisition parameters. 

fMRI data processing 
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fMRI data preprocessing was conducted using fMRIPrep (version 24.0.1) (Esteban et al., 

2019) via the BIDS App Bootstrap (Zhao et al., 2024), with detailed processing steps provided in 

the supplementary material. Custom post-processing steps optimized for narrative listening 

analyses were applied after initial preprocessing. Specifically, we implemented spatial smoothing 

(6 mm full-width half-maximum) to balance noise reduction and preservation of spatial 

activation patterns, performed detrending to mitigate scanner drift, standardized (z-scored) the 

time-series signals across time points within each voxel within each subject, and regressed out 

nuisance signals related to head motion and physiological noise using motion parameters and 

anatomical CompCor regressors. All post-processing steps were carried out using Nilearn; more 

details are provided in the supplementary material and our GitHub repository (see the Code 

Availability section). Post-processed data were further extracted using the Schaefer et al. (2018) 

parcellation (1000 parcels) with 17 networks (Kong et al., 2021). Following recommendations by 

Nastase et al. (2021), two participants were excluded from further analysis due to data quality 

concerns, resulting in a final sample size of N = 19 per group. 
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Figure 1. Experimental design, neuroimaging acquisition, and behavioral evidence. 

(A) Participants were randomly assigned to one of two context conditions—affair (red) or 

paranoia (green)—and read a brief prompt before listening to an 11-minute spoken story (Pretty 

Mouth and Green My Eyes by J.D. Salinger). This context manipulation was consistent across 

both neuroimaging and behavioral experiments. (B) The fMRI study included data from 19 

participants in each context group in the final analysis. The schematic plot illustrates average 

fMRI time courses for each group (affair in red, paranoia in green), with the x-axis representing 

time in TRs. (C) In the behavioral study, participants were asked to press the spacebar whenever 

they perceived evidence supporting their assigned interpretation (affair N = 63, paranoia N = 59). 

The line plots depict the average frequency of button presses over time within each group (i.e., 

agreement across all participants), with peaks corresponding to moments of perceived narrative 

support for each interpretation. 
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Behavioral data 

We collected a behavioral dataset under two different tasks to assess the evidence in the 

stimulus supporting each narrative context over time. Behavioral data were collected from 128 

participants recruited via Prolific (www.prolific.com). Participants were classified into two 

experimental groups: an affair group (n = 63) and a paranoia group (n = 59). Demographic 

details indicated the sample comprised 62 males, 57 females, and three individuals identifying as 

non-binary or third gender. The age distribution included participants aged 18–24 years (n = 18), 

25–34 years (n = 46), 35–44 years (n = 29), 45–54 years (n = 12), 55–64 years (n = 14), and 65 

years or older (n = 3). These participants are a separate sample from those included in the fMRI 

experiment. 

Data were collected through an online experiment developed using PsychoJS scripts 

derived from the PsychoPy builder (PsychoPy3, version 2023.2.0), hosted on Pavlovia 

(https://pavlovia.org/). Participants initially provided informed consent via Qualtrics 

(https://www.qualtrics.com/) before being randomly assigned to one of two context conditions 

(affair versus paranoia). Participants in each group received the same prompts presented to the 

fMRI participants prior to listening to the auditory story. Participants were asked to identify 

moments in the narrative where they perceived evidence for their assigned interpretation (Lee 

and Joanie are having an affair, or Arthur is being paranoid) by pressing the spacebar on their 

keyboards. Immediate visual feedback was provided, indicated by a brief green dot appearing at 

the center of the screen, confirming each response. After completing the task, participants were 

redirected to Qualtrics to complete a post-experiment questionnaire. Data from four participants 

were excluded from subsequent analyses due to incomplete records, resulting in a final dataset of 

122 participants (Figure 1C). More detailed instructions can be found in the supplementary 

material. 

This study was approved by the Princeton University Institutional Review Board (IRB 

12201). In accordance with institutional ethical guidelines, all participants provided informed 

consent electronically before participation. Participants received monetary compensation 

consistent with university policy. All data were anonymized to ensure participant confidentiality. 
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Hidden Markov model (HMM) analysis 

To characterize the temporal dynamics of brain states during story listening, we 

employed Hidden Markov Models (HMMs, Figure 2A), which identify recurring patterns of 

brain network activity and their transitions over time (Baldassano et al., 2018; Meer et al., 2020; 

Vidaurre et al., 2017; Yang et al., 2023). HMMs explicitly model temporal dependencies and 

sequential state transitions, aligning closely with our objective of understanding how prior 

contextual information modulates the temporal evolution of brain states.  

To account for hemodynamic delay, the BOLD signal was shifted backward by three TRs 

(~4.5 s) relative to the timing of the stimulus features (Yeshurun et al., 2017). Non-story 

segments (background music/silence, 24 TRs at scan onset and offset) were excluded, yielding 

451 TRs for analysis. Time series were extracted from 17 functionally defined networks by first 

averaging voxel-wise signals within each parcel, then averaging across all parcels assigned to the 

same network. Each participant’s data were z-scored to normalize signal amplitudes. 

We implemented Gaussian observation HMMs using the hmmlearn Python package, 

modeling brain states as multivariate Gaussian distributions with state-specific means and 

covariances. Transition probabilities were initialized using informed priors to encourage 

temporally plausible dynamics, capturing state transitions that reflect underlying shifts in 

cognitive or network configurations, while avoiding overfitting to transient, noise-driven 

fluctuations in the BOLD signal.  

To improve robustness against local optima during model fitting, we performed five 

independent initialization attempts per model (i.e., with the same number of states but different 

random seeds). For each attempt, we initialized the model parameters—including state means, 

covariances, transition probabilities, and start probabilities—and selected the solution that 

achieved the highest log-likelihood on the training data. Covariance matrices were initialized 

with identity matrices scaled for realism and regularized by adding small values to the diagonal 

to ensure numerical stability during optimization, without distorting the underlying spatial 

structure of brain activity patterns. 

Model generalizability and stability were assessed through leave-one-subject-out cross-

validation (LOOCV).For each fold, a group-level model was trained on all but one subject and 

evaluated on the held-out subject’s data. We quantified model fit using the average cross-

validated log-likelihood across folds. State reliability across folds was evaluated via spatial 
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correlations, with optimal state matching determined using the Hungarian algorithm(Kuhn, 

1955).  Pattern similarity scores were averaged across all fold pairs to yield a summary measure 

of cross-validated pattern reliability. 

HMM analyses were conducted on two experiment groups—the affair context group 

(n=19) and paranoia context group (n=19)—and two constructed groups—a combined group 

comprising all participants (n=38) and a balanced group (n=19), to match the contextual groups, 

consisting of random subset of participants (9 from the affair context and 10 from the paranoia 

context). The balanced group was created to preserve the contextual heterogeneity of the 

combined group while matching the sample size of the individual context groups. This approach 

enabled both the investigation of context-specific brain state dynamics and generalizable patterns 

across contexts. Brain states were characterized by spatial patterns, temporal sequence (i.e., 

occurrence), and inter-subject consistency. All analyses were implemented using Python 

(hmmlearn, NumPy, SciPy). 

 
Figure 2. Hidden Markov models (HMMs) and clustering of brain states. 

(A) Schematic of the HMM analysis pipeline. Parcel-level time series were averaged into 

networks, z-scored across time, and then reshaped into a 2D matrix (networks × time), 

concatenating across participants. HMMs with 2–20 states were estimated separately for four 

groups: affair, paranoia, and two constructed groups (combined and balanced), each with N=38 
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and N=19, respectively. (B) Cluster-wise network activation profiles for the top 10 clusters 

derived from all 836 states (209 states × 4 groups). Each column corresponds to a network, and 

shading intensity reflects average network activity within each cluster. Bar plots on the right 

indicate the number of states from each group that contribute to each cluster. (C) HMM state 

clustering results for the combined group. Each row represents one HMM model (ranging from 2 

to 20 states), and each column corresponds to a brain state sorted by model-specific state 

occupancy (i.e., time spent in each state). Colors and overlaid numbers indicate cluster identity, 

revealing shared temporal features across different model granularities. The top four clusters are 

highlighted.  

State pattern similarity analysis 

Traditional methods for analyzing Hidden Markov Models usually depend on model 

selection criteria to pinpoint a single optimal model, often overlooking valuable insights from 

alternative solutions (Quinn et al., 2018; Vidaurre, Hunt, et al., 2018). To overcome this 

limitation, we created a pattern similarity analysis framework that utilizes information from 

various model parameterizations and experimental conditions. Our approach builds on the 

neurobiological observation that increasing the number of states in an HMM often results in 

meaningful subdivisions of broader brain state processes rather than entirely spurious patterns 

(Baker et al., 2014). For example, a language processing state in a simpler model might 

subdivide into different states for different semantic domains in more complex models, 

representing valid phenomena at different levels of granularity. 

Reliable state patterns from all HMM solutions across the experimental (affair, paranoia) 

and constructed groups (combined, balanced) were extracted using stringent criteria: minimum 

activation thresholds (>0.1), narrow confidence intervals (<0.3), and robust split-half correlation 

(>0.5). States within each solution were indexed by fractional occupancy to standardize 

comparisons, and comprehensive provenance data (experimental group, model specification, 

original state index, normalized index) were recorded. 

Cross-group pattern clustering employed Jaccard distance, which quantifies dissimilarity 

based on the proportion of non-overlapping active features between state patterns. This metric 

emphasizes the spatial layout of active brain networks (i.e., which brain networks are jointly 

active), allowing for comparisons that are less sensitive to differences in activation strength 

across models. Patterns were subjected to agglomerative hierarchical clustering using average 
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linkage, with cluster similarity thresholds from 0.6 to 0.9, yielding consistency in the top four 

clusters (Figure 2B). Subsequent analyses utilized clusters obtained at the threshold of 0.85. 

Clusters were sorted by total fractional occupancy rather than cluster size, prioritizing frequently 

occurring brain states across models. Although the fractional occupancy within each HMM sums 

to 1, we summed the fractional occupancy values of all brain states assigned to each cluster, 

across multiple group-level HMMs, to estimate the relative prominence of each cluster. 

Representative brain states were calculated by averaging the state patterns within each 

cluster and identifying features consistently activated across patterns. These were defined as 

features activated in at least half of the brain states within the respective cluster. Clustering 

HMMs from all four groups (affair, paranoia, combined, balanced) enables us to identify 

context-invariant brain states (i.e., shared) and context-specific brain states during story 

listening. Clustering analysis was implemented via scipy. 

Story feature annotation 

To examine how narrative content influenced brain state dynamics, we annotated the 

stimulus with key linguistic and narrative features at the temporal resolution of the fMRI data 

(one annotation per TR).  

Character and interaction features: As the narrative was delivered by a single narrator 

but featured multiple characters, we identified character-specific speech and interactions per TR. 

The annotations included: (1) Arthur, Lee, and Girl speaking: Identify the intended speaking 

character at each time point. (2) Lee and the girl together: Identify when Lee and the girl 

appeared concurrently, regardless of dialogue. 

Linguistic features: Story were tagged for grammatical parts of speech, including verbs, 

nouns, adjectives, and adverbs, indicating their presence in each TR. 

Thematically relevant combined features: We further derived composite features to 

reflect interactions between character presence and linguistic structure: (1) Lee-Girl Verb (Lee & 

Girl Together × Verb Presence): Captured shared actions or relational dynamics relevant to the 

affair group's expected sensitivity to relational events. (2) Arthur Adjective (Arthur Speaking × 

Adjective Presence): Highlighted descriptive attributes linked to Arthur, informed by findings 

that heightened attention to character traits is characteristic of paranoid cognition (M. J. Green & 

Phillips, 2004).  
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These structured annotations enabled the systematic evaluation of how different narrative 

elements influenced cognitive engagement, providing an essential foundation to investigate the 

hypothesized cognitive biases associated with each group. 

Bayesian generalized linear mixed models 

To investigate the temporal dynamics of brain state patterns and corresponding 

behavioral responses, and to clarify how contextual information modulates the impact of 

narrative content features, we implemented Bayesian generalized linear mixed models 

(GLMMs). Separate GLMM analyses with identical structures were applied to characterize 

brain-context-content and behavior-context-content relationships, providing consistent modeling 

frameworks for brain and behavioral dynamics. 

GLMM for brain state and content analysis 

While the clustering analysis identified spatial configurations of brain states, the temporal 

dynamics necessitated identifying representative state occurrences. A representative brain state 

was chosen for each cluster's first occurrence within the combined group HMMs, as these 

models included all participants. Subsequently, we extracted each participant's state sequence 

(on/off) data corresponding to these representative states at each time point. We fit a logistic 

GLMM separately for each identified cluster with the following structure: 

 
Where  is a binary variable indicating whether the target brain state was active (1) 

or inactive (0) for subject  at timepoint .  represents narrative annotations (e.g., 

character presence, linguistic elements). The interaction terms  assess 

whether content features affect brain state dynamics differently between groups. Autoregressive 

terms  account for temporal dependencies in state occupancy, and  represents 

subject-specific random intercepts that capture individual variability in state prevalence. 

Model parameters were estimated using maximum a posteriori (MAP) estimation, 

applying deviation coding for group identity (+1 for affair, -1 for paranoia) and incorporating 

default Bayesian priors: normal priors with a mean of 0 for fixed effects and inverse gamma 

priors for random effects variance components. These priors provide implicit regularization, 

which is advantageous given our moderate sample size and binary outcomes. We calculated 

posterior probabilities instead of frequentist p-values for inference, quantifying evidence for 
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effects as the probability mass supporting a specific direction of influence. This Bayesian 

approach allows for a more intuitive interpretation of uncertainty in our parameter estimates. 

To address multiple comparisons, we implemented a Bayesian False Discovery Rate 

(FDR) procedure that controls the expected proportion of false discoveries among claimed 

discoveries. Features were considered to have credible effects when their FDR-adjusted posterior 

probabilities exceeded 0.95. 

Coefficient estimates were converted from log-odds to odds ratios (OR) to enhance 

interpretability, indicating how narrative features influenced primary brain state activation odds. 

Group-specific effects were calculated to clarify how content features differentially affected 

brain state dynamics in each context condition. All analyses were performed using custom 

Python with the statsmodels package. 

GLMM for behavioral response and content analysis 

We applied a generalized linear mixed model (GLMM), analogous to those used in the 

brain state analyses, to examine the relationship between narrative content features and 

behavioral responses in a separate participant sample. The dependent variable was a binary 

indicator reflecting whether a button press occurred at each fMRI time point (TR), signaling that 

the participant perceived evidence in the narrative consistent with their assigned contextual 

prompt. Originally recorded continuously (seconds), behavioral responses were aligned to the 

nearest TR to ensure temporal correspondence with stimulus features and brain-state estimates. If 

multiple button presses occurred within a single TR for a given participant, they were counted as 

a single response to avoid overrepresenting clustered inputs. 

The behavioral GLMM followed this structure: 

 
Where  is a binary variable indicating whether subject  pressed the button at 

timepoint .  represents narrative annotations (e.g., character presence, linguistic 

elements). Interaction terms  assess whether content features differentially 

affect behavioral responses across groups. Autoregressive terms  account for 

temporal dependencies in response patterns, and  represents subject-specific random intercepts. 

For parameter estimation, we utilized Maximum A Posteriori (MAP) estimation with 

Bayesian priors to stabilize the estimates, which is particularly important for binary outcomes 
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with temporal dependencies. Similar to the brain-content analyses, we applied deviation coding 

for group identity (+1 for affair, -1 for paranoia), ensuring that the parameter estimates were 

balanced around the overall mean. Random intercepts at the subject level accounted for 

variability in individual response tendencies. Effects were deemed credible when their FDR-

adjusted posterior probabilities surpassed 0.95. 

 

Results 

Brain state clustering identifies shared and context-specific cortical network patterns 

The clustering analysis of brain state patterns across all models identified both context-

specific and context-invariant brain states. Models derived from individual experimental 

conditions (affair or paranoia) produced more context-specific state patterns, as indicated by 

higher cluster IDs corresponding to smaller clusters, particularly when the number of states 

increased. Conversely, combined and constructed groups exhibited more generalized state 

patterns, represented by lower cluster IDs indicating larger clusters (SM Figures 1-4). Brain 

states extracted from the combined group were more consistent than those extracted from the 

constructed balanced group, likely due to differences in sample sizes. 

The four most prominent clusters (Figure 2C), identified based on the total fractional 

occupancy of their constituent brain states, displayed distinct spatial configurations. Cluster 1, 

which had the highest total occupancy (sum=5.968), featured a representative brain state 

involving the Auditory, DMN-A, DMN-B, and Language networks. Cluster 2, the most 

frequently occurring cluster, included a representative brain state encompassing Auditory, 

Control-B, DMN-A, DMN-B, DMN-C, and Language networks. 

Clusters 3 and 4 displayed distinct context-specific characteristics. Cluster 3 primarily 

comprised brain states derived from the affair context models and was largely absent in the 

paranoia context models. Its representative state pattern included Control-A, Control-C, Dorsal 

Attention-A, Dorsal Attention-B, Salience/Ventral Attention-A, Salience/Ventral Attention-B, 

Visual-A, and Visual-B networks. In contrast, Cluster 4 was predominantly composed of brain 

states from paranoia context models and was absent in the affair context models. The 

representative pattern of this cluster involved Control-A, Salience/Ventral Attention-A, and 

Salience/Ventral Attention-B networks. Details of the regions within each network can be found 

in Table S1. 
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Contextual modulation of brain state dynamics during story comprehension 

Representative brain states (Figure 3) for each identified cluster were selected based on 

their first occurrence in the combined group HMMs: Cluster 1 (first state from 2-states model), 

Cluster 2 (second state from 12-states model), Cluster 3 (second state from 2-states model), and 

Cluster 4 (fifth state from 8-states model). Bayesian GLMMs were then estimated separately for 

each cluster to determine how narrative features influenced brain state dynamics and whether 

these effects were modulated by context. 

 
Figure 3. Brain activation patterns of representative brain states from the top four clusters. 

Each row shows a representative brain state from one of the top four clusters identified in the 

combined group HMMs. The left panel displays surface maps of average whole-brain activation, 

computed by averaging brain activity across all participants during timepoints when this state 

was active. Warm colors indicate above-average activation, and cool colors indicate below-
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average activation (z-scored). The right panel shows network-level activation profiles, 

summarizing average activation within canonical functional networks. Error bars represent the 

standard error across states belonging to the same cluster. 

 

Character-specific speech modulated shared brain states 

Representative brain states of clusters 1 and 2 consistently presented across narrative 

contexts but showed different sensitivity to specific narrative features (Figure 4). In Cluster 1, 

Arthur speaking consistently increased Cluster 1 activation odds with high credibility 

(OR=1.239, CI=[1.104, 1.391]), as did the presence of verbs (OR=1.162, CI=[1.040, 1.298]). 

Credible context differences appeared for adjective usage (OR=0.867, CI=[0.766, 0.982]), 

indicating a stronger negative effect in the affair context (OR=0.833, P(Effect>0)=0.020) 

compared to paranoia (OR=1.107, P(Effect>0)=0.873). State occupancy was higher in the affair 

context (0.618) than in paranoia (0.536). 

Cluster 2 similarly showed credible context interactions for Arthur-related adjectives 

(OR=0.764, CI=[0.568, 1.026]), with a stronger negative effect in the affair context (OR=0.690, 

P(Effect>0)=0.041) than in paranoia (OR=1.182, P(Effect>0)=0.784). Arthur speaking increased 

brain state activation odds substantially (OR=1.648, CI=[1.404, 1.934]), whereas girl speaking 

(OR=0.388, CI=[0.209, 0.721]), adjective usage (OR=0.776, CI=[0.647, 0.932]), and Lee 

speaking (OR=0.810, CI=[0.678, 0.967]) were associated with credible decreases. State 

occupancy rate was substantially higher in the affair context (0.135) than in paranoia (0.068). 
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Figure 4. Correspondence between brain state dynamics and story content. 

(A) Time series of cluster-wise brain state probabilities (red: affair group; green: paranoia group) 

for the top four HMM-derived clusters in the combined group. Each panel shows how the 

average probability of each brain state cluster fluctuates throughout the narrative. The bottom 

panel indicates annotated linguistic and narrative features aligned to the story timeline (x-axis 

represent time in TR unit), including character speech and presence, part-of-speech tags (verbs, 

nouns, adjectives, adverbs), and key character pairings (e.g., “Lee + Girl”). (B) Bayesian logistic 

regression analysis estimates the odds ratios (95% credible intervals) for the association between 

content features and brain state cluster expression. Each panel corresponds to one of the four 

clusters. Points represent posterior means of the odds ratio for each content predictor; error bars 

show 95% credible intervals. Red and green indicate features with strong group-level 

differentiation (affair and paranoia, respectively); gray indicates predictors without substantial 
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group differences. Odds ratios above 1 suggest an increased likelihood of brain state expression 

when the corresponding feature is present. 

 

Context-specific brain states reveal diverse character influences 

Representative brain states of clusters 3 and 4 exhibited distinct patterns that indicate 

context-specific processing mechanisms (Figure 4). Cluster 3 demonstrated credible context 

interactions regarding Arthur speaking that it reduced state activation odds (OR=0.781, 

CI=[0.696, 0.877]), while the combined presence of Lee and the girl with verbs increased 

activation odds (OR=1.454, CI=[1.092, 1.936]). Adjective usage (has_adj: OR=1.152, 

CI=[1.019, 1.304]), showing a credible positive effect in the affair context (OR=1.316, 

P(Effect>0)=0.999), but negligible effects in paranoia (OR=0.991, P(Effect>0)=0.458). State 

occupancy was lower in the affair context (0.382) than paranoia (0.464). 

Cluster 4 showed credible context interactions for Arthur speaking (OR=0.867, 

CI=[0.736, 1.022]) and noun usage (OR=1.142, CI=[0.985, 1.324]). Arthur speaking 

demonstrated a stronger negative effect in the affair context (OR=0.599, P(Effect>0)=0.000) 

compared to paranoia (OR=0.796, P(Effect>0)=0.027). Overall state occupancy was slightly 

lower in the affair context (0.096) than paranoia (0.123). 

Multiple comparison analyses with Bayesian False Discovery Rate (FDR) corrections 

confirmed credible interaction effects for adjective usage in Clusters 1 and 3, Arthur-related 

adjectives in Clusters 1 and 2, and both Arthur speaking and noun usage in Cluster 4 (FDR < 

0.05). These results provide credible evidence that narrative context strongly modulates the 

temporal dynamics of brain states, revealing distinct narrative feature influences across different 

contexts. 

Contextual modulation of behavioral responses during story comprehension 

Bayesian GLMMs revealed credible evidence for strong contextual modulation of 

participants' button presses, indicating perceived narrative evidence. 
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Figure 5. Correspondence between behavioral responses and story content features. 

 (A) Time series of button press probabilities from participants in the affair (red) and paranoia 

(green) groups, reflecting the likelihood of detecting context-consistent narrative information 

over time. Dots represent individual button presses; smoothed lines indicate group-averaged 

response probabilities. The lower panel shows annotated story content features (identical to those 

in Figure 4A), including character speech, co-occurrence, and linguistic categories. (B) Bayesian 

logistic regression assessing the relationship between content features and button press behavior. 

Posterior means of odds ratios (±95% credible intervals) are plotted for each predictor. Red and 

green markers highlight features with strong associations in the affair and paranoia groups, 

respectively. Odds ratios >1 indicate increased likelihood of a button press when the 

corresponding feature is present. 

Context-dependent impact of character identity on behavioral responses 

Character-related narrative features showed strong overall influences on behavioral 

responses, with Arthur speaking (OR=2.743, CI=[2.286, 3.291]) and Lee speaking (OR=1.801, 

CI=[1.508, 2.150]) substantially increasing the probability of button presses. Critically, context 

strongly modulated these effects. Arthur speaking exhibited marked contextual differences 

(interaction OR=0.334, CI=[0.279, 0.401]), with substantially greater response likelihood in the 

paranoia context (OR=8.205, P(Effect>0)=1.000) compared to minimal effects in the affair 

context (OR=0.917, P(Effect>0)=0.254). Similarly, Girl speaking demonstrated credible context-
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specific effects (interaction OR=2.864, CI=[1.189, 6.894]), positively influencing responses in 

the affair context (OR=1.559, P(Effect>0)=0.758) but strongly reducing responses in the 

paranoia context (OR=0.190, P(Effect>0)=0.004). Lee speaking also showed credible contextual 

modulation (interaction OR=0.813, CI=[0.681, 0.970]), with a stronger effect in the paranoia 

context (OR=2.216, P(Effect>0)>0.999) relative to the affair context (OR=1.463, 

P(Effect>0)=0.999). 

Context-specific effects of linguistic features 

Linguistic features displayed smaller credible context-dependent patterns in predicting 

behavioral responses. Noun usage had a credible positive effect overall (OR=1.351, CI=[1.205, 

1.515]), modulated by context (interaction OR=0.811, CI=[0.723, 0.909]). Nouns more strongly 

increased response probability in the paranoia context (OR=1.667, P(Effect>0)>0.999) than in 

the affair context (OR=1.095, P(Effect>0)=0.865). Similarly, adverb usage demonstrated 

credible context modulation (interaction OR=0.814, CI=[0.717, 0.924]), negatively influencing 

button presses in the affair context (OR=0.844, P(Effect>0)=0.032) but positively in paranoia 

(OR=1.275, P(Effect>0)=0.996). Verb usage had a modest positive main effect (OR=1.046, 

CI=[0.933, 1.172]) and credible context interaction (interaction OR=0.917, CI=[0.818, 1.027]), 

with stronger effects observed in paranoia (OR=1.141, P(Effect>0)=0.946) than in the affair 

context (OR=0.959, P(Effect>0)=0.303). 

Descriptive character features show contextual variation 

Arthur-related adjectives showed a strong negative main effect on responses (OR=0.411, 

CI=[0.297, 0.570]), with credible contextual modulation (interaction OR=1.155, CI=[0.834, 

1.599]). The negative effect was stronger in the affair context (OR=0.475, P(Effect>0)=0.001) 

compared to paranoia (OR=0.356, P(Effect>0)<0.001). The combined presence of Lee and girl 

characters negatively influenced responses (OR=0.445, CI=[0.168, 1.175]), though this context 

modulation did not meet FDR criteria. The interaction of these characters with verbs showed no 

credible context-specific effects. 

 

Discussion 

Our study investigated how narrative context modulates brain state dynamics and 

behavioral responses during story comprehension. We identified both shared and context-

specific brain states that spanned auditory, language, defaut mode, control, attention, and visual 
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networks. By modeling the relationships between stimulus features, context, and brain states, we 

found credible evidence that context influences how narrative features, particularly speech or 

references to specific characters, impact the temporal dynamics of these brain states. Independent 

behavioral analyses also revealed strong context-dependent effects of stimulus features, 

demonstrating that certain narrative elements systematically modulate participants’ judgments of 

narrative evidence for a given interpretational context. 

Shared brain states suggest convergent processing during story listening 

Two brain state clusters (Clusters 1 and 2) consistently appeared across both narrative 

contexts. Both clusters prominently activated established functional networks implicated in 

narrative comprehension, including auditory and language regions critical for processing spoken 

narratives, as well as default mode networks (DMN-A and DMN-B) associated with semantic 

integration, episodic memory, and narrative coherence (Hasson et al., 2018; Jackson et al., 2023; 

Raichle et al., 2001; Simony et al., 2016). 

Interestingly, Cluster 2 included additional activation in Control Network-B and DMN-C. 

Control Network-B has been linked to executive function, attentional modulation, and cognitive 

flexibility—abilities critical for monitoring complex narrative structures and integrating detailed 

episodic information (Cole et al., 2014; Dworetsky et al., 2024). DMN-C has been associated 

with mental simulation and contextual updating (Ritchey & Cooper, 2020). Despite shorter 

overall occupancy relative to Cluster 1, Cluster 2 may represent brief, intensive periods of 

heightened cognitive demand and/or narrative immersion. 

Context-specific brain states index specialized processing demands 

Clusters 3 and 4 revealed distinct brain state profiles associated with specific narrative 

contexts, suggesting context-dependent cognitive mechanisms. Cluster 3 was predominantly 

linked to the affair group and notably engaged visual processing regions, despite participants 

listening to an auditory stimulus. Visual network activation during story listening may represent 

mental imagery, facilitating visualization of narrative scenes uniquely elicited by the affair 

storyline (Koide-Majima et al., 2024; J. Liu et al., 2022; Pearson, 2019). Moreover, extensive 

activation of control, dorsal attention, and salience networks in Cluster 3 may indicate focused 

attentional deployment and active cognitive control processes, supporting detailed narrative 

evaluation and emotional engagement characteristic of the affair context (Song et al., 2023). 
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In contrast, Cluster 4, primarily expressed in the paranoia group, showed pronounced 

activity in control and salience networks. These networks have previously been associated with 

executive vigilance and attentional monitoring (Cole et al., 2013; Hermans et al., 2014), 

processes that may be particularly relevant when interpreting uncertainty, ambiguity, or potential 

threat—features emphasized in paranoia-inducing narratives. The co-activation of the salience 

network further emphasizes the importance of rapid detection and emotional appraisal of 

narrative cues (Lynch et al., 2024; Uddin, 2015).  

Narrative context modulates the influence of story features on brain state dynamics 

Our Bayesian GLMM analyses provided credible evidence that narrative context 

modulates the influence of narrative features on the temporal dynamics of brain states. Across all 

clusters, brain state activations consistently responded to narrative content, underscoring a 

general mechanism by which narrative elements shape cognitive processing. However, notable 

distinctions emerged between shared clusters (Clusters 1 and 2) and context-specific clusters 

(Clusters 3 and 4). For instance, references to the central character, Arthur speaking, increased 

activation in the shared clusters but had a suppressive effect in context-specific clusters, 

regardless of narrative condition. The enhanced activation observed in shared clusters aligns with 

cognitive and psycholinguistic research demonstrating that mentions of central characters often 

prompt sustained attention, semantic integration, and improved memory encoding during 

narrative comprehension (Grall & Finn, 2022; Mar, 2011). Conversely, the suppressive effect in 

context-specific clusters might reflect competition between different narrative interpretations or 

the activation of inhibitory processes related to emotional evaluation, scenario plausibility, or 

context-specific narrative expectations (Sap et al., 2022; Sava-Segal et al., 2025). 

Adjectives also showed contextually specific effects, aligning with prior work and 

indicating that the interpretation of descriptive language varies with the narrative context (Jacobs 

& Willems, 2018). While the precise mechanisms underlying these effects remain undetermined, 

the observed differences across conditions point to sensitivity in how descriptive elements are 

processed in context. These findings underscore the adaptability of narrative comprehension 

processes and their responsiveness to contextual cues embedded in story structure and content. 
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Contextual modulation of behavioral responses highlights selective engagement with 

narrative content 

Independent behavioral analyses reinforce our observation that context modulates which 

narrative features drive brain state expression. We found that narrative context modulates which 

features of the narrative stimulus drive participants’ judgments of evidence for the interpretation. 

In particular, character mentions prominently influenced behavioral responses, with Arthur’s 

speaking notably increasing the likelihood of explicit responses, especially within the paranoia 

context. This sensitivity to character speech aligns with established evidence from narrative 

psychology and psycholinguistics, showing heightened audience engagement with central 

narrative figures who guide interpretive frameworks and ensure story coherence (Eekhof et al., 

2023; M. C. Green & Appel, 2024; Hartung et al., 2017). Likewise, Lee’s speaking elicited 

strong context-dependent behavioral responses, reflecting variations in perceived narrative 

relevance or emotional significance of different characters across contexts. 

Importantly, these character-driven effects in behavioral responses were stronger than 

those observed in brain-state analyses, suggesting distinct cognitive mechanisms underlying 

explicit versus implicit narrative processing. Explicit behavioral responses likely reflect 

deliberate inferential and evaluative processes, such as active narrative coherence assessments, 

conscious attribution of narrative significance, or explicit inference generation. These explicit 

processes may differ from the processes evoked by passive story listening. 

Linguistic features such as nouns and adverbs exhibited modest but reliable context-

dependent effects in behavioral analyses. These differences indicate that certain lexical 

categories may be differentially weighted or processed depending on the narrative context 

(Tilmatine et al., 2024), though the specific mechanisms—whether semantic, evaluative, or 

otherwise—remain to be clarified. Descriptive adjectives showed more substantial negative 

effects in the affair context. This pattern is consistent with prior psycholinguistic findings 

suggesting that adjectives can modulate emotional tone and guide interpretive inferences, 

particularly in context-sensitive narratives (Lei et al., 2023). 

These findings demonstrate that prior contextual information systematically modulated 

behavioral responses to narrative content, with the strongest effects observed for speech 

attribution and more modest effects for specific linguistic features. The pattern suggests that 
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context does not uniformly enhance or suppress engagement with all content features but instead 

modulates behavioral responses in a selective, feature-dependent manner. 

Limitations and future directions 

Our study provides valuable insights into how narrative context modulates brain state 

dynamics and behavioral responses, yet several limitations point toward promising avenues for 

future research. First, our HMMs were conducted at the network level, averaging signals within 

the 17 predefined functional networks. While network-level analysis is theoretically justified 

given the functional specialization of these large-scale brain networks, future studies employing 

finer-grained analyses, such as region-of-interest or voxel-wise HMMs (Vidaurre, Abeysuriya, et 

al., 2018), could provide additional insights. These approaches might reveal more nuanced or 

heterogeneous dynamics within networks, offering a deeper understanding of localized processes 

during narrative comprehension. 

Second, our neuroimaging and behavioral data were collected from separate participant 

samples. Although both datasets independently revealed context-sensitive effects, collecting 

brain and behavioral responses from the same individuals would allow for tighter linkage 

between neural state dynamics and subjective narrative judgments, enabling more direct tests of 

brain–behavior relationships (Xu et al., 2025).  

Third, while we used part-of-speech (PoS) labels to characterize contextual differences in 

language input, these labels offer only a shallow approximation of meaning. PoS categories 

reflect syntactic structure rather than semantic content, and future work should incorporate richer 

linguistic features, such as word embeddings, semantic role labels, or discourse structure, to 

better capture the narrative elements that drive brain dynamics. 

Finally, using a single narrative stimulus may limit the generalizability of our findings to 

other narrative forms or genres. Future studies examining diverse narrative types, varying in 

emotional content, complexity, and modality, could test the breadth and boundaries of context 

effects on brain dynamics and behavioral engagement.  

Together, these extensions would refine our understanding of how context shapes neural 

and behavioral responses to narrative and support more general models of naturalistic cognition. 
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Conclusion 

This study provides converging brain and behavioral evidence that narrative context 

systematically modulates how listeners process and interpret story content. Through brain state 

modeling, we identified both context-invariant states—engaging canonical auditory, language, 

and default mode networks—and context-specific states that recruited control, salience, and 

visual networks depending on the contextual priming. These context-specific states reflected 

distinct patterns of functional network engagement, such as visual and attentional recruitment 

during the affair context, and responded differentially to narrative features, including character 

speech and linguistic descriptors. Complementary behavioral analyses revealed that character-

related cues, especially speech by Arthur and Lee, exerted strong and selective influences on 

participants’ explicit judgments of narrative evidence, with the direction and magnitude of these 

effects shaped by contextual framing. Together, these findings demonstrate that narrative context 

does not merely shape interpretation retrospectively but actively reconfigures ongoing cognitive 

and brain processing in a temporally specific and content-sensitive manner. 

 

Data and Code Availability 

The Python code used for our analysis and visualization is available at 

https://github.com/yibeichan/prettymouth  
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