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 10 

Summary 11 

Sharing narratives is an ancient and efficient way for humans to transmit experiences to each 12 

other. The efficacy of a given narrative has been shown to be associated with the similarity 13 

between the brain activation patterns of the speaker and the listeners (SL), as well as the neural 14 

similarity among the listeners (LL). Operationalizing the pattern (dis)similarity as the distances 15 

between participants, this study proposes a “herding hypothesis”. That is, like a group of sheep 16 

guided by a shepherd, the more closely the listeners follow the speaker, i.e. higher SL similarity, 17 

the more tightly the listeners will tend to cluster together, i.e. higher LL similarity. Using fMRI 18 

data collected during the verbal production of two spoken narratives as well as in an audience of 19 

listeners, we found that SL and LL similarities are correlated across time, as predicted by the 20 

herding hypothesis. In addition, the more “herded” brain regions also show a stronger LL 21 

similarity at the more engaging moments of the narrative, supporting an interpretation that the 22 

herding effect reflects effective storytelling. By taking both LL and SL neural coupling into 23 

consideration in a moment-by-moment manner, this study demonstrates that examining the 24 

dynamic multi-brain functional network can potentially reveal when and how the speaker loses 25 

the audience; for example, whether they go astray in all directions or they share the same 26 

misunderstanding. 27 

 28 

 29 

 30 
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Introduction 1 

Humans use narratives to convey complex, temporally structured sequences of thoughts to one 2 

another (Bruner et al., 1986; Willems et al., 2020). This kind of communication is thought to rely 3 

on a process of neural “alignment” or “coupling” 1,2, whereby the speaker guides the listener(s) 4 

through a sequence of brain states to arrive at an understanding of the ideas or events the 5 

speaker intends to convey. Spoken stories have been found to drive synchronized neural 6 

alignment among listeners (LL coupling) throughout the cortical language network and 7 

extending into higher-level areas of the default-mode network thought to support event 8 

representation and narrative comprehension 3. On the other hand, asymmetric, time-lagged 9 

coupling has been observed between the speaker and listener(s) (SL coupling) in an 10 

overlapping set of high-level cortical areas 4–9. 11 

The efficacy of a given narrative has been shown to vary across individuals. Both higher LL 12 

neural coupling and higher SL neural coupling have been separately associated with better 13 

behavioral estimates of speech comprehension across individuals 4,5,7,9–12,12–16,16–18. Individuals 14 

performing better in the post-test often showed higher neural coupling with the speaker or other 15 

listeners. The efficacy of a narrative may also vary across time: a storyteller may meander or 16 

lose focus, and the content of the narrative may fluctuate in terms of how engaging it is or how 17 

much it resonates with listeners. 18 

This study proposes a “herding hypothesis” incorporating both LL and SL neural coupling into a 19 

unified framework for the multi-brain neural dynamics between speaker and audience. Like a 20 

shepherd, a successful speaker guides the listeners toward the same brain states. We 21 

operationalize the “distance” between speaker and listeners as the intersubject (dis)similarity of 22 

brain activity patterns within different cortex regions: SL dissimilarity reflects the distance 23 

between the speaker and the listeners; LL dissimilarity reflects the distance between listeners 24 

(Fig. 1). The herding hypothesis proposes that when the listeners follow the speaker closely, 25 

they also tend to cluster more closely to each other. On the other hand, when the audience is 26 

lost, most of the time, they simply go astray in all directions 19, resulting in low SL coupling, as 27 

well as low LL coupling. In other words, we expect SL and LL pattern (dis)similarities to 28 

correlate over the course of a narrative. 29 

The shepherd must be a few steps ahead of the sheep. With this in mind, we expect the 30 

speaker’s brain activity patterns to precede the audience’s brain activity within a range of a few 31 

seconds (1 TR = 1.5 seconds) based on prior work reporting that the listener's brain activity 32 

echoes that of the speaker with a lag of up to 10 seconds 4,5,7,9,12,20,21. In this case, a significant 33 

herding effect would mean that the listeners cluster together in trailing the speaker.  34 

Aiming for a better understanding of the multi-brain neural dynamics underlying storytelling, this 35 

study first verifies the herding hypothesis: the listeners cluster together when they follow the 36 

speaker and disperse in different directions when they deviate from the speaker, and then 37 

illustrates the potential of this approach in identifying not only successful listeners but also 38 

moments in a speech where the audience resonates with the speaker. 39 
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1 

Figure 1. The herding hypothesis. A). We use neural pattern dissimilarities to quantify the 2 

distances between the speaker and listeners (SL) and the distances between listeners (LL). B). 3 

The herding hypothesis proposes that listeners cluster together when they follow the speaker 4 

closely, like a group of sheep guided by a shepherd. C). In other words, the herding hypothesis 5 

proposes that SL pattern dis(similarity) correlates with LL (dis)similarity across time. Note that 6 

SL coupling was computed using a lag of -10 to -1 TRs (speaker activity precedes for 15 to 1.5 7 

seconds). 8 

 9 

Results 10 

The herding hypothesis predicts that listeners will more closely cluster together at moments of 11 

the story where they more closely follow the speaker (Fig. 1). We quantify the distance between 12 

speaker and listeners by computing the moment-by-moment intersubject (dis)similarity of neural 13 

activity patterns. The resulting dynamic LL and SL couplings indicate how tightly the listeners 14 

are clustered together and aligned to the speaker, respectively. We calculate the SL dissimilarity15 

at different lags from -15 to -1.5 seconds. We first verify that listener activity patterns echo those 16 

of the speaker with a lag of several seconds; that is, SL similarities peak at negative lags (Fig. 17 

2). We then reveal a significant herding effect in which the LL coupling is correlated with the 18 

strength of SL coupling in the DMN and language network (Fig. 3). Finally, we show higher LL 19 

coupling at moments of the story behaviorally reported as more engaging (Fig. 4A). This effect 20 

is stronger in brain regions showing higher herding effect, such as DMN (Fig. 4B), providing 21 

behavioral evidence that the herding effect reflects how well the audience follows the speaker.  22 

SL and LL neural similarities: Listeners follow the speaker’s brain activity 23 

patterns 24 

To visualize the relationship between SL and LL neural similarities, we first plot the total ROI × 25 

lag intersubject similarity matrices (Fig. 2). In agreement with previous studies 4,7,9,20, SL 26 

dynamics are markedly different from LL dynamics. LL similarities peak at lag 0 in most regions: 27 
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listener brain activity patterns are synchronized in processing the story's content. In contrast, 1 

significant SL similarities mainly occur at negative lags: listener activity patterns echo the 2 

speaker activity patterns with seconds-long lags. 3 

Figure 2. LL and SL neural pattern similarities. Full intersubject similarity matrices (upper) 4 

where each row shows the neural pattern similarities in each brain region at varying lags across 5 

columns. Brain regions are ordered by their peak lags. Intersubject pattern similarities for each 6 

TR were averaged across all TRs in the story. Lags with the peak correlation values are color-7 

coded. Significant peak lags are marked with wide (horizontal) colored bars (p < .05, FDR 8 

correction). Nonsignificant peak lags are marked with narrow colored bars. The correlation 9 

values are normalized with Fisher’s transformation and then z-scored across lags. ROIs with 10 

significant peak lags are plotted on the brain (lower). LL similarities peak at lag 0 in most brain 11 

regions, reflecting that the listeners are synchronized. On the other hand, SL similarities often 12 

peak at negative lags, indicating that the speaker precedes the listeners. 13 

 14 

Herding effect: The more closely the listeners follow the speaker, the more tightly 15 

the listeners cluster together 16 

The herding hypothesis predicts that the more closely the listeners follow the speaker, the more 17 

closely the listeners cluster together. We quantified the herding effect by computing the 18 

correlation between moment-by-moment LL coupling and lagged SL coupling throughout the 19 

narrative. Statistical significance for the herding effect was assessed using permutation 20 

procedures based on two surrogate datasets, one generated by replacing the speaker with a 21 

“pseudo-speaker” sampled from the listeners (Fig. S1), the other by applying unreasonable SL 22 
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lags (i.e., the speaker precedes the listeners for more than 15 seconds or the speaker does not 1 

precede the listeners). Only ROIs that passed both statistical tests are considered to show a 2 

significant herding effect. Namely, a stronger herding effect was found with the real speaker 3 

rather than pseudo-speakers and with reasonable rather than unreasonable SL lags. For 4 

comparison, we also computed the herding metrics based on SL coupling at 0 lag and found no 5 

significant effect (Fig. S2). We test the herding hypothesis with one-tailed tests. For the results 6 

of ad hoc two-tailed tests, see Fig. S3. 7 

Our results reveal a significant herding effect for both stories in the precuneus, posterior 8 

cingulate cortex, cuneus, superior and middle temporal gyrus, and superior/middle occipital 9 

gyrus (Fig. 3); many of these regions have been implicated in representing high-level events 10 

and narrative features 3,22–24. See Fig. S4 for an exemplar ROI showing significant LL coupling 11 

but a nonsignificant herding effect. In addition, a similar herding effect is revealed with 12 

alternative SL coupling measurement, namely, averaged pattern similarity between the speaker 13 

and each listener (Fig. S5) instead of pattern similarly between the speaker and the averaged 14 

listener pattern (Fig. 3). 15 

 16 

 17 

Figure 3. Cortical areas with a significant herding effect. A). A left precuneus ROI showing a18 

significant correlation between SL and LL coupling over the course of “Merlin,”  namely, a 19 

significant herding effect. B). All ROIs with a significant herding effect. They are colored 20 

according to the amplitude of the correlation between SL and LL similarity (p < .05, FDR 21 

correction). SL and LL similarities were normalized with Fisher’s transformation and z-scored 22 

across time before computing the herding effect.  23 

5 

o 

r 

 
 a 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 11, 2023. ; https://doi.org/10.1101/2023.10.10.561803doi: bioRxiv preprint 

https://doi.org/10.1101/2023.10.10.561803
http://creativecommons.org/licenses/by-nc-nd/4.0/


6

 1 

  2 

More “herded” brain regions show stronger LL similarity at engaging moments of 3 

the story.  4 

What drives the herding effect? We hypothesized that fluctuations in how engaging listeners find5 

certain parts of the story may relate to how effectively the speaker “herds” the listeners. To 6 

behaviorally assess how engaging the spoken narrative was moment by moment, we collected 7 

continuous engagement scores from a separate group of participants. In agreement with a 8 

previous study 25, we found that engagement scores correlate with LL neural similarity; that is, 9 

higher LL similarity occurs at more engaging moments of a story. In a similar vein, higher neural 10 

synchronization has been reported for more memorable 26, surprising 27, and emotional 11 

moments during stories 28,29. 12 

13 

Figure 4. The engagement effect. A). Brain regions where the behavioral engagement score 14 

significantly correlated with LL neural similarity (p < .05, FDR correction). In these regions, 15 
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moments in the story with higher engagement ratings elicit higher LL neural similarity. The color 1 

bar indicates the magnitude of the correlation between the engagement score and LL similarity. 2 

B). Brain regions with a stronger herding effect tend to show a stronger engagement effect. This 3 

finding provides behavioral evidence that the herding effect reflects how engaging listeners find 4 

the narrative.  5 

Among regions showing a significant herding effect, a significant engagement effect was found 6 

for both stories in the precuneus, posterior cingulate cortex, cuneus, and superior/middle 7 

occipital gyrus (Fig. 4A). More importantly, the engagement effect is larger in areas showing a 8 

stronger herding effect (Fig. 4B). This finding provides behavioral evidence that the herding 9 

effect reflects how engaged the listeners are with the content of the story. 10 

 11 

Discussion 12 

This study examined the multi-brain neural dynamics underlying storytelling. We first verified 13 

that the audience echoed the speaker’s neural activation patterns with a temporal lag (Fig. 2) 14 
4,7,9,12,17,20. As predicted by the herding hypothesis (Fig. 1), the more closely the listeners’ brain 15 

activity matched that of the speaker, the more closely the listeners clustered together (Fig. 3). 16 

We argue that this herding effect is an index of effective communication during storytelling, 17 

indicating that, metaphorically, the speaker guides the listeners’ neural activity, especially in 18 

higher-order brain areas. We also show that LL neural similarity increases at more engaging 19 

moments of the story (Fig. 4A). This engagement effect is stronger in the more “herded” brain 20 

regions (Fig. 4B), supporting the hypothesis that the herding effect reflects effective 21 

storytelling—that is, when the storyteller most successfully conveys their thoughts to the 22 

listeners.  23 

A significant herding effect was found in several high-order brain areas in the DMN, including 24 

the precuneus, middle/posterior cingulate cortex, lateral parietal cortex, and right anterolateral 25 

temporal cortex (Fig. 3). The posterior medial regions in particular have been shown to encode 26 

paragraph-level narrative structure 30. These regions are thought to host content-specific, 27 

supramodal event representations 3,22,24,31–33, linking the production and comprehension of 28 

spoken narratives 4,9,34. The current results add a dynamical perspective to this body of work, 29 

suggesting that the speaker’s own neural trajectory through high-level event features may guide 30 

the listeners’ upcoming event representations with varying effectiveness over the course of a 31 

narrative. This dynamic convergence and divergence of idiosyncratic internal representations 32 

with the unfolding narrative would be particularly interesting for further investigation.  33 

If the herding effect can be interpreted as an index of effective speech, what factors may impact 34 

how closely the speaker resonates with the audience?  In keeping with recent theoretical work 35 

positioning the DMN as a high-level interface between external events with prior knowledge 36 

(Yeshurun et al., 2021), we speculate that individual differences in how closely listeners follow 37 

the speaker may in part reflect differences in the way the speaker’s narrative aligns with each 38 

listener’s internal state and idiosyncratic memories. Prior work, for example, has suggested that 39 

brain-to-brain coupling may vary as a function of social closeness 35,36 or whether the speaker 40 

and listener share similar beliefs (e.g. similar political orientation; 37. It is worth noting, however, 41 

that there may be different kinds of effective speech. For example, a speaker may seek to 42 

(mis)direct listeners toward a different understanding than their own; listeners that are unfamiliar 43 
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versus experts with a particular topic may experience the same speech very differently 10,14; and 1 

a speaker may attempt to “meet certain listeners where they are” rather than wrangling all 2 

listeners similarly. 3 

The methodology we introduce takes into account both LL and SL couplings in a moment-by-4 

moment manner. In our stories, most of the time, the listeners converge to trail the speaker and 5 

when they lose track, they disperse in different directions (low LL and low SL; time points in the 6 

lower-left quadrant of the scatterplot in Fig. 3A). However, there are moments where LL is high 7 

despite low SL (time points in the upper-left quadrant of the scatterplot in Fig. 3A), or LL is low 8 

despite relatively high SL (e.g. time points in the lower-right quadrant of the scatterplot in Fig. 9 

3A). We speculate that in the former case, the audience might share the same 10 

misunderstanding, or the speaker might not undergo the experience from the same perspective 11 

as the listeners 38 while in the latter case, the listeners might only form a loose group around the 12 

speaker due to ambiguous speech or heterogeneous apprehension 32.  13 

We hope that, with more diverse speakers and larger audiences, future work will be able to 14 

more extensively sample the less successful moments of communication across narratives. Our 15 

framework for measuring dynamic, multi-brain coupling can highlight when and how a speaker 16 

and the audience become misaligned. By relating these moments back to the speaker’s delivery, 17 

narrative content, and the personal backgrounds of both the speaker and individual listeners, we 18 

will be better positioned to identify why communication breaks down and develop solutions for 19 

accommodating different learning styles.   20 

 21 

Methods 22 

fMRI datasets 23 

This study relied on two openly available auditory story-listening datasets from the "Narratives" 24 

collection (OpenNeuro: https://openneuro.org/datasets/ds002245; 39), including “Sherlock” and 25 

“Merlin” (18 participants, 11 females). The speaker data reported in the original study 9 was also 26 

included. All participants reported fluency in English and were 18–40 years of age. The criteria 27 

for participant exclusion have been described in Zadbood et al. 9. All participants provided 28 

informed, written consent, and the experimental protocol was approved by the institutional 29 

review board of Princeton University. 30 

fMRI preprocessing  31 

fMRI data were preprocessed using FSL (https://fsl.fmrib.ox.ac.uk/), including slice time 32 

correction, volume registration, and high-pass filtering (140 s cutoff). All data were aligned to 33 

standard 3 × 3 × 4 mm Montreal Neurological Institute space (MNI152). A gray matter mask was 34 

applied. The first 25 and last 20 volumes of fMRI data were discarded to remove large signal 35 

fluctuations at the beginning and end of the time course to account for signal stabilization and 36 

stimulus onset/offset prior to computing intersubject dissimilarities 40. The global mean 37 

responses were subtracted before pattern similarity analyses 41,42. 38 

ROI masks 39 

We used 238 functional ROIs defined independently by Shen and colleagues 43 based on 40 

whole-brain parcellation of resting-state fMRI data. ROIs with less than 10 voxels based on the 41 

coverage of our BOLD acquisition were excluded from further analyses. 42 
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SL and LL neural similarities 1 

We computed intersubject pattern correlations in each ROI at each time point of the story, i.e. 2 

TR by TR spatial pattern similarities (Fig. 1), using the leave-one-participant-out method  40. For 3 

LL similarity, we computed the correlation between the activation pattern from one listener and 4 

the averaged pattern of the other 17 listeners. Similarly, SL similarity was computed between 5 

the speaker and the average pattern of 17 listeners, excluding each listener in turn. Note that 6 

quantifying SL coupling in this way entails that SL coupling can be high while LL coupling is low; 7 

i.e. listeners may be widely dispersed but roughly centered on the speaker. We also 8 

recomputed SL coupling by first computing the similarities between the speaker and each 9 

individual listener and then averaging these similarities. This analysis yielded qualitatively 10 

similar results (Fig. S5). According to the literature, the speaker and listener activation patterns 11 

are not necessarily temporally synchronized 4,6,7,9,20. Therefore, we also computed the neural 12 

similarities at varying lags. 13 

Pearson correlation was used to estimate pattern similarity. Time-lagged neural similarities were 14 

computed by circularly shifting the time series such that the non-overlapping edge of the shifted 15 

time series was concatenated to the beginning or end. The resulting correlation values were 16 

normalized with Fisher’s z transformation before further statistical analyses. 17 

We statistically evaluated the SL and LL neural similarities separately before examining the 18 

herding effect (Fig. 2). We generated surrogates with the same mean and autocorrelation as the 19 

original time series by time-shifting and time-reversing the functional data prior to computing the 20 

intersubject similarities. We computed the correlation between the original seed and time-21 

shifted/-reversed target time series. All possible time shifts were used to generate the null 22 

distribution. The resulting correlation values were compiled into null distributions after averaging 23 

across time points and participants. One-tailed z-tests were applied to compare neural 24 

similarities within the window of lag -10 to +10 TRs against this null distribution. We corrected 25 

for multiple comparisons across lags and ROIs by controlling the false discovery rate (FDR) at q 26 

< .05 44.  27 

Computing the herding metric 28 

We defined the herding metric as the correlation between LL neural similarity at lag 0 and SL 29 

neural similarity at lags within the window of -10 to -1 TRs (i.e. speaker precedes the listeners 30 

for 1.5 to 15 seconds). A significant herding effect indicates that the listeners are more 31 

synchronized when they echo the speaker’s activation pattern. Two statistical tests were applied.  32 

First, to verify that only the speaker showed the herding effect, we replaced the actual speaker 33 

with each of the 18 listeners to serve as the pseudo-speaker (Fig. S1). LL similarity was 34 

computed among the remaining 17 listeners, excluding the pseudo-speaker, using the leave-35 

one-out method, i.e. correlation between the activation pattern from one listener and the 36 

averaged pattern of all the other 16 listeners. SL similarity was computed between the real 37 

speaker and the average pattern of the 17 listeners, Pseudo-SL similarity was computed using 38 

the same method as the SL similarity, except that the real speaker was replaced by the pseudo-39 

speaker. We computed the herding metric with the real and pseudo-SL similarity and compared 40 

the real and pseudo-herding effects using a two-sample one-tailed t-test (N = 18). We corrected 41 

for multiple comparisons across lags and ROIs by controlling the FDR at q < .05. Only the ROI x 42 

SL lag combinations that passed this test were included for the second statistical test. 43 
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Second, the speaker must precede the listeners to “herd” them. Therefore, we tested the real 1 

herding effect against correlation values between LL at lag 0 and SL at all the possible lags 2 

outside of the chosen lag window (-10~-1 TR)  using one-tailed z-tests. We circularly shifted the 3 

original time series to obtain a time-lagged time series. The number of possible lags equals the 4 

number of time points. The FDR method was used to control for multiple comparisons (ROI x SL 5 

lag; q < .05). Only ROIs that passed both statistical tests are considered to show a significant 6 

herding effect.  7 

To quantify the amplitude of the herding effect, we extracted the peak LL-SL correlation value 8 

within the -10 to -1 TR SL lag window. We required that the peak value be larger than the 9 

absolute value of any negative peak and excluded any peaks occurring at the edges of the 10 

window. 11 

Behavioral engagement 12 

Engagement ratings 13 

Behavioral assessments of dynamic engagement were acquired in another group of participants 14 

recruited via Amazon Mechanical Turk. Participants with less than 20 unique rating scores (i.e. 15 

effectively flat ratings across the story) were excluded. 33 raters were included for “Merlin” (15 16 

females). A separate sample of 34 raters was included for “Sherlock” (14 females). All 17 

participants reported fluency in English and were 25–71 years of age. All participants provided 18 

informed, written consent, and the experimental protocol was approved by the institutional 19 

review board of Princeton University. 20 

The participants were instructed to indicate “how engaging the current event is” while listening 21 

to the stories by moving a slider continuously. We presented the stories and collected the data 22 

using the web-based tool DANTE (Dimensional Annotation Tool for Emotions) 23 

( https://github.com/phuselab/DANTE) 45. The rating scores were acquired with a resolution of 24 

0.04 seconds and then downsampled to 1.5 seconds (= 1 TR). 25 

The engagement scores were z-scored across time, detrended, and averaged across raters. 26 

Correlation between engagement and LL neural similarity 27 

To quantify the relationship between time-point-by-time-point engagement ratings and LL neural 28 

similarity, we computed the Pearson correlation between the engagement scores and the LL 29 

similarity over time within ROIs showing a significant herding effect (one-tailed). We corrected 30 

for multiple comparisons across ROIs by controlling the FDR at q < .05. 31 

Correlation between engagement effect and herding effect across ROIs 32 

To quantify the relationship between engagement ratings and group-level herding, we computed 33 

the Pearson correlation between the herding effect and the engagement effect across all ROIs 34 

(p < .05). Note that since the number of ROIs is fixed, a significant p-value associated with this 35 

correlation does not indicate generalization to other regions (and does not support population-36 

level inference).  37 

 38 

Data and code availability.  39 

This study relied on openly available spoken story datasets from the “Narratives” collection 40 

(OpenNeuro: https://openneuro.org/datasets/ds002245) 39. 41 
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