Open data
The “Narratives” fMRI dataset for evaluating models of naturalistic language comprehension

Ethel Franklin Betts (1908), from The Orphant Annie Book, by James Whitcomb Riley (wikimedia)
OpenNeuro ds002345 OpenNeuro DataLad DOI
The “Narratives” collection aggregates fMRI datasets acquired over the course of seven years (2011–2018) while participants listened to spoken stories. In aggregate, participants listened to 27 diverse stories ranging from ~3 to ~56 minutes for a total of ~4.6 hours of unique audio stimuli. The collection currently includes 345 unique subjects participating in a total of 891 functional scans with accompanying anatomical data. Data are organized into a machine-readable format according to the BIDS standard with exhaustive metadata derived from the original DICOMs. Anonymized subject labels are linked across sessions and include demographic and behavioral variables including age, gender, condition, and comprehension score. Auditory stimuli are included in the dataset for non-commercial scholarly research—principally feature extraction—under fair use or fair dealing provisions. The data collection amounts to over 350,000 functional volumes of story-listening fMRI data and accompanying stimuli, totaling 6.4 days. The scripts used to collate and process these data are available at the GitHub repository. Slides for a presentation of this dataset at SfN 2019 are available on Google Slides. The public data release is accompanied by a data descriptor paper currently in preparation. If you find this dataset useful, please cite the following:
Nastase, S. A., Liu, Y.-F., Hillman, H., Zadbood, A., Hasenfratz, L., Keshavarzian, N., Chen, J., Honey, C. J., Yeshurun, Y., Regev, M., Nguyen, M., Chang, C. H. C., Baldassano, C., Lositsky, O., Simony, E., Chow, M. A., Leong, Y. C., Brooks, P. P., Micciche, E., Choe, G., Goldstein, A., Vanderwal, T., Halchenko, Y. O., Norman, K. A., & Hasson, U. (2021). The “Narratives” fMRI dataset for evaluating models of naturalistic language comprehension. Scientific Data, 8, 250. DOI PDF
This dataset has been (re-)analyzed in the following publications:
Moussa, O., & Toneva, M. (2025). Brain-tuning improves generalizability and efficiency of brain alignment in speech models. arXiv.
DOIBinhuraib, T., Gao, R., & Ivanova, A. A. (2025). LITcoder: a general-purpose library for building and comparing encoding models. arXiv.
DOISamara, A., Zada, Z., Vanderwal, T., Hasson, U., & Nastase, S. A. (2025). Cortical language areas are coupled via a soft hierarchy of model-based linguistic features. bioRxiv.
DOIRahimi, M., Yaghoobzadeh, Y., & Daliri, M. R. (2025). Explanations of large language models explain language representations in the brain. arXiv.
DOIYin, C., Zhang, Y., Wen, X., & Li, P. (2025). Improve language model and brain alignment via associative memory. arXiv.
DOIYang, L., Guo, L., Yuan, Y., Han, J., Hu, X., & Zhang, T. (2025). A foundational fMRI model for representing continuous brain states. IEEE Journal of Biomedical and Health Informatics.
DOITu, Z., Dai, L., Zhang, B., Chen, S., Yang, Y., Meng, D., Gong, Y., & Sun, J. (2025). Revealing human brain syntactic processing: insights from voxel-wise models and network representation. Brain and Language, 265, 105569.
DOIJanssen, J., Guil Gallego, A., Díaz-Caneja, C. M., Gonzalez Lois, N., Janssen, N., González-Peñas, J., Gordaliza, P. M., Buimer, E., van Haren, N., Arange, C., Kahn, R., Hulshoff Pol, H. E., & Schnack, H. G. (2025). Heterogeneity of morphometric similarity networks in health and schizophrenia. Schizophrenia, 11, 70.
DOIFialoke, S., Deb, A., Rode, K., Tripathi, V., & Garg, R. (2025). Temporal synchronization analysis: a model-free method for detecting robust and nonlinear brain activation in fMRI data. bioRxiv.
DOIChen, Y., Zada, Z., Nastase, S. A., Ashby, F. G., & Ghosh, S. S. (2025). Context modulates brain state dynamics and behavioral responses during narrative comprehension. bioRxiv.
DOIAlKhamissi, B., Tuckute, G., Tang, Y., Binhuraib, T., Bosselut, A., & Schrimpf, M. (2025). From language to cognition: how LLMs outgrow the human language network. arXiv.
DOIZada, Z., Nastase, S. A., Speer, S., Mwilambwe-Tshilobo, L., Tsoi, L., Burns, S., Falk, E., Hasson, U., & Tamir, D. (2025). Linguistic coupling between neural systems for speech production and comprehension during real-time dyadic conversations. bioRxiv.
DOITikochinski, R., Goldstein, A., Meiri, Y., Hasson, U., & Reichart, R. (2024). Incremental accumulation of linguistic context in artificial and biological neural networks. Nature Communications, 16, 803.
DOIYe, Z., Ai, Q., Liu, Y., de Rijke, M., Zhang, M., Lioma, C., & Ruotsalo, T. (2025). Generative language reconstruction from brain recordings. Communications Biology, 8, 346.
DOILinli, Z., Liang, X., Zhang, Z., Hu, K., & Guo, S. (2025). Enhancing brain age estimation under uncertainty: a spectral-normalized neural gaussian process approach utilizing 2.5D slicing. NeuroImage, 311, 121184.
DOIBotch, T. L., & Finn, E. S. (2024). Neural representations of concreteness and concrete concepts are unique to the individual. Journal of Neuroscience, e0288242024.
DOIKang, K., Seidlitz, J., Bethlehem, R. A., Xiong, J., Jones, M. T., Mehta, K., Keller, A. S., Tao, R., Randolph, A., Larsen, B., Tervo-Clemmens, B., Feczko, E., Dominguez, O. M., Nelson, S. M., Lifespan Brain Chart Consortium, Schildcrout, J., Fair, D. A., Satterthwaite, T. D., Alexander-Bloch, A., & Vandekar, S. (2024). Study design features increase replicability in brain-wide association studies. Nature, 636(8043), 719-727.
DOIRaccah, O., Chen, P., Gureckis, T. M., Poeppel, D., & Vo, V. A. (2024). The “Naturalistic Free Recall” dataset: four stories, hundreds of participants, and high-fidelity transcriptions. Scientific Data, 11, 1317.
DOIUsman, M., Rehman, A., Shahid, A., Rehman, A. U., Gho, S. M., Lee, A., Khan, T. M., & Razzak, I. (2024). Multi-task adversarial variational autoencoder for estimating biological brain age with multimodal neuroimaging. arXiv.
DOIRehman, A. U., Rehman, A., Usman, M., Shahid, A., Gho, S. M., Lee, A., Khan, T. M., & Razzak, I. (2024). Biological brain age estimation using sex-aware adversarial variational autoencoder with multimodal neuroimages. arXiv.
DOIDominey, P. F. (2024). A connectivity gradient in structured reservoir computing predicts a hierarchy for mixed selectivity in human cortex. In 2024 International Joint Conference on Neural Networks (IJCNN) (pp. 1-8). IEEE.
DOISun, H., Zhao, L., Wu, Z., Gao, X., Hu, Y., Zuo, M., Zhang, W., Han, J., Liu, T., & Hu, X. (2024). Brain-like functional organization within large language models. arXiv.
DOIBao, R., He, S., Grant, E., & Ou, Y. (2024). AGE2HIE: transfer learning from brain age to predicting neurocognitive outcome for infant brain injury. arXiv.
DOIYazin, F., Majumdar, G., Bramley, N., & Hoffman, P. (2024). Fragmentation and multithreading of experience in the default-mode network. bioRxiv.
DOIChang, C. H., Nastase, S. A., Zadbood, A., & Hasson, U. (2024). How a speaker herds the audience: multi-brain neural convergence over time during naturalistic storytelling. Social Cognitive and Affective Neuroscience.
DOIYang, X., O’Reilly, C., & Shinkareva, S. V. (2024). Embracing naturalistic paradigms: substituting GPT predictions for human judgments. bioRxiv.
DOIKumar, S.*, Sumers, T. R.*, Yamakoshi, T., Goldstein, A., Hasson, U., Norman, K. A., Griffiths, T. L., Hawkins, R. D., & Nastase, S. A. (2024). Shared functional specialization in transformer-based language models and the human brain. Nature Communications, 15, 5523.
DOILi, H., Mei, K., Liu, Z., Ai, Y., Chen, L., Zhang, J., & Ling, Z. (2024). Refining self-supervised learnt speech representation using brain activations. arXiv.
DOIKobo, O., Yeshurun, Y., & Schonberg, T. (2024). Reward-related regions play a role in natural story comprehension. iScience, 27(6), 109844.
DOIYin, C., Ye, Z., & Li, P. (2024). Language reconstruction with brain predictive coding from fMRI data. arXiv.
DOIYe, Z., Zhan, J., Ai, Q., Liu, Y., de Rijke, M., Lioma, C., & Ruotsalo, T. (2024). Query augmentation by decoding semantics from brain signals. arXiv.
DOILi, J. (2024). On the shape of brainscores for large language models (LLMs). arXiv.
DOIHe, S., Guan, Y., Cheng, C. H., Moore, T. L., Luebke, J. I., Killiany, R. J., Rosene, D. L., Koo, B.-B., & Ou, Y. (2023). Human-to-monkey transfer learning identifies the frontal white matter as a key determinant for predicting monkey brain age. Frontiers in Aging Neuroscience, 15, 1249415.
DOIHe, Z., & Toyoizumi, T. (2023). Causal graph in language model rediscovers cortical hierarchy in human narrative processing. arXiv.
DOIOota, S. R., Agarwal, V., Marreddy, M., Gupta, M., & Bapi, R. S. (2023). Speech taskonomy: which speech tasks are the most predictive of fMRI brain activity? In Interspeech 2023 (pp. 5167–5171).
DOIYin, C., Yu, Q., Fang, Z., He, J., Peng, C., Lin, Z., Shao, J., & Li, P. (2023). Data contamination issues in brain-to-text decoding. arXiv.
DOISchmälzle, R., Liu, H., Delle, F. A., Lewin, K. M., Jahn, N. T., Zhang, Y., Yoon, H., & Long, J. (2023). Moment-by-moment tracking of audience brain responses to an engaging public speech: replicating the reverse-message engineering approach. Communication Monographs, 91(1), 31–55.
DOISong, H., Shim, W. M., & Rosenberg, M. D. (2023). Large-scale neural dynamics in a shared low-dimensional state space reflect cognitive and attentional dynamics. eLife, 12, e85487.
DOIHahamy, A., Dubossarsky, H., & Behrens, T. E. J. (2023). The human brain reactivates context-specific past information at event boundaries of naturalistic experiences. Nature Neuroscience.
DOIXi, N., Zhao, S., Wang, H., Liu, C., Qin, B., & Liu, T. (2023). UniCoRN: Unified Cognitive Signal ReconstructioN bridging cognitive signals and human language. In Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers) (pp. 13277-13291).
linkBethlehem, R. A., Seidlitz, J., White, S. R., Vogel, J. W., Anderson, K. M., Adamson, C., … & Schaare, H. L. (2022). Brain charts for the human lifespan. Nature, 604(7906), 525–533.
DOILiu, X., Zhou, M., Shi, G., Du, Y., Zhao, L., Wu, Z., Liu, D., Liu, T., & Hu, X. (2023). Coupling artificial neurons in bert and biological neurons in the human brain. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 37, No. 7, pp. 8888–8896).
DOICaucheteux, C., Gramfort, A., & King, J. R. (2023). Evidence of a predictive coding hierarchy in the human brain listening to speech. Nature Human Behaviour, 7, 430–441.
DOIOota, S. R., Marreddy, M., Gupta, M., & Bapi, R. S. (2023). How does the brain process syntactic structure while listening? In Findings of the Association for Computational Linguistics: ACL 2023 (pp.6624–6647). Association for Computational Linguistics.
DOIChang, H. C. C., Nastase, S. A., & Hasson, U. (2022). Information flow across the cortical timescales hierarchy during narrative construction. Proceedings of the National Academy of Sciences, 119(51), e2209307119.
DOIOota, S. R., Gupta, M., & Toneva, M. (2023). Joint processing of linguistic properties in brains and language models. In Oh, A., Neumann, T., Globerson, A., Saenko, K., Hardt, M., & Levine, S. (Eds.), Advances in Neural Information Processing Systems 36 (pp. 18001–18014).
linkDufumier, B., Grigis, A., Victor, J., Ambroise, C., Frouin, V., & Duchesnay, E. (2022). OpenBHB: a large-scale multi-site brain MRI data-set for age prediction and debiasing. NeuroImage, 263, 119637.
DOICaucheteux, C., Gramfort, A., & King, J. R. (2022). Deep language algorithms predict semantic comprehension from brain activity. Scientific Reports, 12, 16327.
DOIThomas, A. W., Ré, C., & Poldrack, R. A. (2022). Self-supervised learning of brain dynamics from broad neuroimaging data. In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, & A. Oh (Eds.), Advances in Neural Information Processing Systems (pp. 21255–21269). Curran Associates, Inc.
linkde la Vega, A., Rocca, R., Blair, R. W., Markiewicz, C. J., Mentch, J., Kent, J. D., Herholz, P., Ghosh, S. S., Poldrack, R. A., & Yarkoni, T. (2022). Neuroscout, a unified platform for generalizable and reproducible fMRI research. eLife.
DOIMillet, J., Caucheteux, C., Orhan, P., Boubenec, Y., Gramfort, A., Dunbar, W., Pallier, C., & King, J.-R. (2022). Toward a realistic model of speech processing in the brain with self-supervised learning. In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, & A. Oh (Eds.), Advances in Neural Information Processing Systems (pp. 33428–33443). Curran Associates, Inc.
linkSchmälzle, R., Wilcox, S., & Jahn, N. T. (2022). Identifying moments of peak audience engagement from brain responses during story listening. Communication Monographs, 89(4), 515–538.
DOIMennen, A. C., Nastase, S. A., Yeshurun, Y., Hasson, U., Norman, K. A. (2022). Real-time neurofeedback to alter interpretations of a naturalistic narrative. NeuroImage: Reports, 2(3), 100111.
DOIKumar, M., Anderson, M. J., Antony, J. W., Baldassano, C., Brooks, P. P., Cai, M. B., Chen, P.-H. C., Ellis, C. T., Henselman-Petrusek, G., Huberdeau, D., Hutchinson, J. B., Li, P. Y., Lu, Q., Manning, J. R., Mennen, A. C., Nastase, S. A., Richard, H., Schapiro, A. C., Schuck, N. W., Shvartsman, M., Sundaraman, N., Suo, D., Turek, J. S., Turner, D. M., Vo, V. A., Wallace, G., Wang, Y., Williams, J. A., Zhang, H., Zhu, X., Capota, M., Cohen, J. D., Hasson, U., Li, K., Ramadge, P. J., Turk-Browne, N. B., Willke, T. L., & Norman, K. A. (2021). BrainIAK: The Brain Imaging Analysis Kit. Aperture Neuro, 1(4).
DOIDominey, P. F. (2021). Narrative event segmentation in the cortical reservoir. PLOS Computational Biology, 17(10), e1008993.
DOICaucheteux, C., Gramfort, A., & King, J. R. (2021). Model-based analysis of brain activity reveals the hierarchy of language in 305 subjects. In Conference on Empirical Methods in Natural Language Processing, Punta Cana, Dominican Republic.
linkCaucheteux, C., Gramfort, A., & King, J. R. (2021). Disentangling syntax and semantics in the brain with deep networks. In M. Meila & T. Zhang (Eds.), Proceedings of the 38th International Conference on Machine Learning: Vol. 139 (pp. 1336-1348). Proceedings of Machine Learning Research (PMLR).
linkNastase, S. A., Liu, Y. F., Hillman, H., Norman, K. A., & Hasson, U. (2020). Leveraging shared connectivity to aggregate heterogeneous datasets into a common response space. NeuroImage, 116865.
DOIChien, H.-Y. S., & Honey, C. J. (2020). Constructing and forgetting temporal context in the human cerebral cortex. Neuron, 106.
DOINastase, S. A., Gazzola, V., Hasson, U., & Keysers, C. (2019). Measuring shared responses across subjects using intersubject correlation. Social Cognitive and Affective Neuroscience, 14(6), 667–685.
DOILin, X., Sur, I., Nastase, S. A., Divakaran, A., Hasson, U., & Amer, M. R. (2019). Data-efficient mutual information neural estimator. arXiv, arXiv:1905.03319.
DOI
